Skip to main content

Advertisement

Log in

Curdlan and other bacterial (1→3)-β-d-glucans

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three structural classes of (1→3)-β-d-glucans are encountered in some important soil-dwelling, plant-associated or human pathogenic bacteria. Linear (1→3)-β-glucans and side-chain-branched (1→3,1→2)-β-glucans are major constituents of capsular materials, with roles in bacterial aggregation, virulence and carbohydrate storage. Cyclic (1→3,1→6)-β-glucans are predominantly periplasmic, serving in osmotic adaptation. Curdlan, the linear (1→3)-β-glucan from Agrobacterium, has unique rheological and thermal gelling properties, with applications in the food industry and other sectors. This review includes information on the structure, properties and molecular genetics of the bacterial (1→3)-β-glucans, together with an overview of the physiology and biotechnology of curdlan production and applications of this biopolymer and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeyeye A, Jansson P-E, Lindberg B, Henrichsen J (1988) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 37. Carbohydr Res 180:295–299

    Google Scholar 

  • Alban S, Franz G (2001) Partial synthetic glucan sulphates as potential new antithrombotics: a review. Biomacromolecules 2:354–361

    Google Scholar 

  • Altabe SG, Inon de Iannino N, Mendoza D de, Ugalde RA (1994) New osmoregulated β (1–3), β(1–6) glucosyltransferase(s) in Azospirillum brasilense. J Bacteriol 176:4890–4898

    Google Scholar 

  • Altabe SG, Talaga P, Wieruszeski J-M, Lippens G, Ugalde R, Bohin J-P (1998) Periplasmic glucans of Azospirillum brasilense. In Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, p. 390

    Google Scholar 

  • Anguillesi A (2003) Molecular biology of curdlan biosynthesis by Agrobacterium sp. ATTC 31749. MSc thesis, La Trobe University, Melbourne

  • Anonymous (1996a) 21 CFR 172. Food additives permitted for direct addition to food for human consumption: curdlan. Federal Register 61:65941

    Google Scholar 

  • Anonymous (1996b) Bioproducts: bio-concrete. BioIndustry 13:56–57

    Google Scholar 

  • Anonymous (2000) WHO food additives series. In: WHO (ed) 53rd Meeting of the joint FAO/WHO expert committee on food additives. JEFCA/WHO, Geneva

  • Arrecubieta C, López R, García E (1996) Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 184:449–455

    Google Scholar 

  • Arthur LO, Bulla LA, Grant SJ, Lawrence KN (1973) Carbohydrate metabolism in Agrobacterium tumefaciens. J Bacteriol 116:304–313

    Google Scholar 

  • Bhagwat AA, Mithöfer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister DL (1999) Further studies of the role of cyclic β-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)-β-glucosyl. Plant Physiol 119:1057–1064

    Google Scholar 

  • Bohn JA, Bemiller JN (1995) (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:1–14

    Google Scholar 

  • Buller CS (1990) Water insoluble polysaccharide polymer and method thereof. US patent 4,908,310

  • Chanzy H, Vuong R (1985) Ultrastructure and morphology of crystalline polysaccharides. In Atkins EDT (ed) Polysaccharides: topics in structure and morphology. Macmillan, London, pp 41–71

    Google Scholar 

  • Chen R, Bhagwat AA, Yaklich R, Keister DL (2002) Characterisation of nvdD, the third gene involved in the synthesis of cyclic-β-(1–3),(1,6)-d-glucans in Bradyrhizobium japonicum. Can J Microbiol 48:1008–1016

    Google Scholar 

  • Chuah CT, Sarko A, Deslandes Y, Marchessault RH (1983) Packing analysis of carbohydrates and polysaccharides. Part 14. Triple-helical crystalline structure of curdlan and paramylon hydrates. Macromolecules 16:1375–1382

    Google Scholar 

  • Cornish A, Greenwood JA, Jones CW (1988) Binding-protein-dependent glucose transport by Agrobacterium radiobacter grown in glucose-limited continuous culture. J Gen Microbiol 134:3099–3110

    Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Davis WB (1992) Unique bacterial polysaccharide polymer gel in cosmetics, pharmaceuticals and foods. US patent 5,158,772

  • Iannino NI de, Ugalde RA (1993) Biosynthesis of cyclic β-(1–3),β-(1–6) glucan in Bradyrhizobium spp. Arch Microbiol 159:30–38

    Google Scholar 

  • DeAngelis PL (1999) Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci 56:670–682

    Google Scholar 

  • DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275:24124–24129

    Google Scholar 

  • DeAngelis PL, White CL (2004) Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F. J Bacteriol 186:8529–8532

    Google Scholar 

  • Deslandes Y, Marchessault RH, Sarko A (1980) Triple-helical structure of (1→3)-β-d-glucan. Macromolecules 13:1466–1471

    Google Scholar 

  • Dijkraaf GJP, Li H, Bussey H (2001) Cell wall glucans of Saccharomyces cerevisiae. In: De Baets S, Vandamme EJ, Steinbüchel A (eds) Polysaccharides II: polysaccharides from eukaryotes. (Biopolymers vol 5) Wiley, pp 179–213

  • Dombrecht B, Marchal K, Vanderleyden J, Michelis J (2002) Prediction and overview of the RpoN-regulon in closely related species of the Rhizobiales. Genome Biol 3:1–11

    Google Scholar 

  • Estrella MJ, Pfeffer PE, Brouillette JN, Ugalde RA, Iannino NI de (2000) Biosynthesis and structure of cell associated glucans in slow growing Rhizobium loti strain NVP2309. Symbiosis 29:173–199

    Google Scholar 

  • Evans NA, Hoyne PA, Stone BA (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (Sirofluor) with polysaccharides. Carbohydr Polym 4:215–230

    Google Scholar 

  • Evans SG, Morrison D, Kaneko Y, Havlik I (1998) The effect of curdlan sulphate on development in vitro of Plasmodium falciparum. Trans R Soc Trop Med Hyg 92:87–89

    Google Scholar 

  • Footrakul K, Suyanandana P, Amemura A, Harada T (1981) Extracellular polysaccharides of Rhizobium from Bangkok MIRCEN collection. J Ferment Technol 59:9–14

    Google Scholar 

  • Fukui S (1969) Active transport of uridine diphosphate glucose in Agrobacterium tumefaciens. J Biochem 66:873–876

    Google Scholar 

  • Fukui S, Miyairi S (1970) Active transport of glucose-1-phosphate in Agrobacterium tumefaciens. J Bacteriol 101:685–691

    Google Scholar 

  • Fulton WS, Atkins EDT (1980) The gelling mechanism and relationship to molecular structure of microbial polysaccharide curdlan. In: French AD, Gardner KH, (eds) Fibre diffraction methods. American Chemical Society, Washington, D.C., pp 385–410

    Google Scholar 

  • Futatsuyama H, Yui T, Ogawa K (1999) Viscometry of curdlan, a linear (1→3)-β-d-glucan, in DMSO or alkaline solutions. Biosci Biotechnol Biochem 63:1481–1483

    Google Scholar 

  • Ghai SK, Hisamatsu A, Amemura A, Harada T (1981) Production and chemical composition of extracellular polysaccharides of Rhizobium. J Gen Microbiol 122:33–40

    Google Scholar 

  • Gore RS, Miller KJ (1993) Cyclic β-1,6 -1,3 glucans are synthesised by Bradyrhizobium japonicum bacteroids within soybean (Glycine max) root nodules. Plant Physiol 102:191–194

    Google Scholar 

  • Griffiths G, Cook NJ, Gottfridson E, Lind T, Lidholt K, Roberts IS (1998) Characterization of the glycosyltransferase enzyme from the Escherichia coli K5 capsule gene cluster and identification and characterization of the glucuronyl active site. J Biol Chem 273:11752–11757

    Google Scholar 

  • Harada T (1992) The story of research into curdlan and the bacteria producing it. Trends Glycosci Glycotechnol 4:309–317

    Google Scholar 

  • Harada T, Harada A (1996) Curdlan and succinoglycan. In Dumitriu S (ed) Polysaccharides in medical applications. Dekker, New York, pp 21–57

    Google Scholar 

  • Harada T, Yoshimura T (1964) Production of a new acidic polysaccharide containing succinic acid by a soil bacterium. Biochim Biophys Acta 83:374–376

    Google Scholar 

  • Harada T, Fujimori K, Hirose S, Masada M (1966) Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agric Biol Chem 30:764–769

    Google Scholar 

  • Harada T, Koreeda A, Sato S, Kasai N (1979) Electron microscopic study on the ultrastructure of curdlan gel: assembly and dissociation of fibrils by heating. J Electron Microsc 28:147–153

    Google Scholar 

  • Henrichsen J (1995) Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 33:2759–2762

    Google Scholar 

  • Hisamatsu M, Amemura A, Matsuo T, Matsuda H, Harada T (1982) Cyclic (1,2)-β-d-glucans and the octasaccharide repeating-unit of succinoglycan produced by Agrobacterium. J Gen Microbiol 128:1873–1879

    Google Scholar 

  • Honda S, Sugino H, Asano T, Kakinuma A (1986) Activation of the alternative pathway of complement by an antitumour (1,3)-β-d-glucan from Alkaligenes faecalis var. myxogenes IFO13140 and its lower molecular weight and carboxymethylated derivatives. Immunopharmacology 11:29–37

    Google Scholar 

  • Jagodzinski PP, Wiaderkiewicz R, Kurawski G, Kloczewiak M, Nakashima H, Hyjek E, Yamamoto N, Uryu T, Kaneko Y, Posner MR, Kozbor D (1994) Mechanism of the inhibitory effect of curdlan sulphate on HIV-1 infection in vitro. Virology 202:735–745

    Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  • Jezequel V (1998) Curdlan: a new functional β-glucan. Cereal Foods World 43:361–364

    Google Scholar 

  • Kai A, Ishino T, Arashida T, Hatanaka K, Akaike T, Matsuzaki K, Kaneko Y, Mimura T (1993) Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source. Carbohydr Res 240:153–159

    Google Scholar 

  • Kai A, Arashida T, Hatanaka K, Akaike T, Matsuzaki K, Mimura T, Kaneko Y (1994) Analysis of the biosynthetic process of cellulose and curdlan using 13C-labelled glucoses. Carbohydr Polym 23:235–239

    Google Scholar 

  • Kako K, Koreeda A, Harada T (1989) Electron microscopic studies on curdlan formation by bacteria in solid culture medium. Bull Kobe Women’s Univ 22:183–189

    Google Scholar 

  • Kanke M, Tanabe E, Katayama H, Koda Y, Yoshitomi H (1995) Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol Pharm Bull 18:1154–1158

    Google Scholar 

  • Karnezis T, McIntosh M, Wardak AZ, Stanisich VA, Stone BA (2000) The biosynthesis of β-glycans. Trends Glycosci Glycotechnol 12:211–227

    Google Scholar 

  • Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA (2002) Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATTC31749 and effect of its inactivation on production of high molecular-mass (1→3)-β-d-glucan (curdlan). J Bacteriol 184:4114–4123

    Google Scholar 

  • Karnezis T, Epa VC, Stone BA, Stanisich VA (2003) Topological characterization of an inner membrane (1→3)-β-d-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 13:693–706

    Google Scholar 

  • Kasai N, Harada T (1980) Ultrastructure of curdlan. In: French AD, Gardner KH (eds) Fiber diffraction methods. Am Chem Soc Symp 141:363–383

    Google Scholar 

  • Kataoka K, Muta T, Yamazaki S, Takeshige K (2002) Activation of macrophages by linear (1→3)-β-d-glucans. J Biol Chem 277:36825–36851

    Article  CAS  PubMed  Google Scholar 

  • Kemner JM, Liang X, Nester EW (1997) The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol 179:2452–2458

    Google Scholar 

  • Kenyon WJ, Buller CS (2002) Structural analysis of the curdlan-like exopolysaccharide produced by Cellulomonas flavigena KU. J Ind Microbiol Biotechnol 29:200–203

    Google Scholar 

  • Kim M-K, Lee I-Y, Ko J-H, Rhee Y-H, Park Y-H (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioeng 62:317–323

    Google Scholar 

  • Kim M-K, Lee I-Y, Lee J-H, Kim K-T, Rhee Y-H, Park Y-H (2000) Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium species. J Ind Microbiol Biotechnol 25:180–183

    Google Scholar 

  • Kim MK, Ryu KE, Choi WA, Rhee YH, Lee IY (2003) Enhanced production of (1→3)-β-d-glucan by a mutant strain of Agrobacterium species. Biochem Eng J 16:163–168

    Google Scholar 

  • Knecht JC, Schiffman G, Austrian R (1970) Some biological properties of Pneumococcus type 37 and the chemistry of its capsular polysaccharide. J Exp Med 132:475–487

    Google Scholar 

  • Komaniecka I, Choma A (2003) Isolation and characterisation of periplasmic cyclic β-glucans of Azorhizobium caulinodans. FEMS Microbiol Lett 227:263–269

    Google Scholar 

  • Koreeda A, Harada T, Ogawa K, Sato S, Kasai N (1974) Study of the ultrastructure of gel-forming (1→3)-β-d-glucan (curdlan-type polysaccharide) by electron microscopy. Carbohydr Res 33:396–399

    Google Scholar 

  • Koumoto K, Umeda M, Numata M, Matsumoto T, Sakurai K, Kunitake T, Shinkai S (2004) Low MW sulphated curdlan with improved water solubility forms macromolecular complexes with polycytidylic acid. Carbohydr Res 339:161–167

    Google Scholar 

  • Lawford HG, Rousseau JD (1991) Bioreactor design considerations in the production of high quality microbial exopolysaccharides. Appl Biochem Biotechnol 28/29:667–684

    Google Scholar 

  • Lawford HG, Rousseau JD (1992) Production of β-1,3-glucan exopolysaccharide in low shear systems: the requirement for high oxygen tension. Appl Biochem Biotechnol 34/35:597–612

    Google Scholar 

  • Lawford H, Keenan J, Phillips K, Orts W (1986) Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide product ion by Alcaligenes faecalis. Biotechnol Lett 8:145–150

    Google Scholar 

  • Lee I-Y (2002) Curdlan. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Polysaccharides I: Polysaccharides from prokaryotes. (Biopolymers vol 5) Wiley, pp 135–158

  • Lee J-H, Lee IY (2001) Optimization of uracil addition for curdlan (β-1→3-glucan) production by Agrobacterium sp. Biotechnol Lett 23:1131–1134

    Google Scholar 

  • Lee J-H, Park Y-H (2001) Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnol Lett 23:525–530

    Google Scholar 

  • Lee I-Y, Seo WT, Kim GJ, Kim MK, Park CS, Park YH (1997a) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J Indust Microbiol Biotechnol 18:255–259

    Google Scholar 

  • Lee JW, Yeomans WG, Allen AL, Kaplan DL, Deng S, Gross RA (1997b) Exopolymers from curdlan production: incorporation of glucose-related sugars by Agrobacterium sp. strain ATTC 31749. Can J Microbiol 43:149–156

    Google Scholar 

  • Lee IY, Kim MK, Lee JH, Seo WT, Jung JK, Lee HW, Park YH (1999a) Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Eng 20:283–287

    Google Scholar 

  • Lee J-H, Lee I-Y, Kim M-K, Park Y-H (1999b ) Optimal pH control of batch processes for production of curdlan by Agrobacterium species. J Ind Microbiol Biotechnol 23:143–148

    Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant–bacterial interactions. Annu Rev Microbiol 46:307–346

    Google Scholar 

  • Li J, Burton RA, Harvey AJ, Hrmova M, Wardak AZ, Stone BA, Fincher GB (2003) Biochemical evidence linking a putative callose synthase gene with (1→3)-β-d-glucan biosynthesis in barley. Plant Mol Biol 53:213–225

    Google Scholar 

  • Llull D, Muñoz R, López R, García E (1999) A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide: type 37 pneumococci are natural, genetically binary strains. J Exp Med 190:241–252

    Google Scholar 

  • Llull D, García E, López R (2001) Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of branched Type 37 capsular polysaccharide in pneumococcus and other Gram-positive species. J Biol Chem 276:21053–21061

    Google Scholar 

  • Marchessault RH, Deslandes Y (1979) Fine structure of (1→3)-β-d-glucans: curdlan and paramylon. Carbohydr Res 75:231–242

    Google Scholar 

  • Matthysse AG, Thomas DL, White AR (1995) Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081

    Google Scholar 

  • McIntosh M (2004) An investigation of the production of curdlan, a (1→3)-β-glucan, by an Agrobacterium sp. PhD thesis, La Trobe University, Melbourne

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    Google Scholar 

  • Miller KJ, Gore RS, (1992) Cyclic β-(1,6)(1,3)-glucan of Bradyrhizobium japonicum: functional analogs of the cyclic β-(1,2)-glucan of Rhizobium? Curr Microbiol 24:101–104

    Google Scholar 

  • Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol 172:136–142

    Google Scholar 

  • Mithöfer A, Bhagwat AA, Feger M, Ebel J (1996) Suppresion of fungal β-glucan induced plant defence in soybean (Glycine max L.) by cyclic 1,3-1-6-β-glucans from the symbiont Bradyrhizobium japonicum. Planta 199:270–275

    Google Scholar 

  • Mithöfer A, Bhagwat AA, Keister DL, Ebel J (2001) Bradyrhizobium japonicum mutants defective in cyclic β-glucan synthesis show enhanced sensitivity to plant defense responses. Z Naturforsch C 56:581–584

    Google Scholar 

  • Mueller A, Raptis J, Rice PJ, Kalbfleisch JH, Stout RD, Ensley HE, Browder W, Williams DL (2000) The influence of glucan polymer structure and solution conformation on binding to (1→3)-β-d-glucan receptors in a human monocyte-like cell line. Glycobiology 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi I, Kimura K, Kusui S, Yamazaki E (1974) Complex formation of gel-forming bacterial (1–3)-β-d-glucans (curdlan-type polysaccharides) with dyes in aqueous solution. Carbohydr Res 32:47–52

    Google Scholar 

  • Nakanishi I, Kimura K, Suzuki T, Ishikawa M, Banno I, Sakane T, Harada T (1976) Demonstration of curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 22:1–11

    Google Scholar 

  • Nakanishi I, Kimura K, Kanamaru T (1992) Studies on curdlan-type polysaccharide. I. Industrial production of curdlan-type polysaccharide. J Takeda Res Lab 51:99–108

    Google Scholar 

  • Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277:21567–21575

    Google Scholar 

  • Nishinari K, Zhang H (2000) Curdlan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC, Boca Raton, pp 269–286

  • Okuyama K, Otsubo A, Fukuzawa Y, Ozawa M, Harada T, Kasai N (1991) Single-helical structure of native curdlan and its aggregation state. J Carbohydr Chem 10:645–656

    Google Scholar 

  • Orts WJ, Rouseau JD, Lawford HG (1987) Improved microbial production of curdlan-type polysaccharide. In: Stivala SS, Crescenzi V, Dea ICM (eds) Industrial polysaccharide: the impact of biotechnology and advanced methodologies. Gordon and Breach, New York, pp 459–469

  • Phillips KR, Lawford HG (1983) Curdlan: its properties and production in batch and continuous fermentations. In: Bushell DE (ed) Progress in industrial microbiology, vol 18. Elsevier, Amsterdam, pp 201–229

    Google Scholar 

  • Phillips KR, Pik J, Lawford HG, Lavers B, Kligerman A, Lawford GR (1983) Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Can J Microbiol 29:1331–1338

    Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  Google Scholar 

  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted β-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225

    Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Google Scholar 

  • Ross GD, Vetvicka V, Yan J, Xia,Y, Vetviková J (1999) Therapeutic intervention with complement and β-glucan in cancer. Immunopharmacology 42:61–74

    Google Scholar 

  • Saito H, Misaki A, Harada T (1968) A comparison of the structure of curdlan and pachyman. Agric Biol Chem 32:1261–1269

    Google Scholar 

  • Saito H, Ohki T, Sasaki T (1977) A 13C nuclear magnetic resonance study of gel-forming (1→3)-β-d-glucans. Evidence of the presence of single-helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faecalis var. myxogenes IFO 13140. Biochemistry 16:908–914

    Google Scholar 

  • Saito H, Yoshioka Y, Uehara N, Aketagawa J, Tanaka S, Shibata Y (1991) Relationship between conformation and biological response for (1,3)-β-glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant. Carbohydr Res 217:181–190

    Google Scholar 

  • Sasaki T, Abiko N, Sugino Y, Nitta K (1978) Dependence on chain length of antitumour activity of (1,3)-β-d-glucan from Alcaligenes faecalis var. myxogenes IFO13140 and its acid-degraded products. Cancer Res 379–383

  • Seljelid R (1986) A water-soluble aminated beta 1–3d-glucan derivative causes regression of solid tumors in mice. Biosci Rep 6:845–851

    Google Scholar 

  • Spicer EJF, Goldenthal EI, Ikeda T (1999) A toxicological assessment of curdlan. Food Chem Toxicol 37:455–479

    Google Scholar 

  • Stasinopoulos SJ, Fischer PR, Stone BA, Stanisich VA (1999) Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology 9:31–41

    Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and biology of (1→3)-β-glucans. La Trobe University, Melbourne

    Google Scholar 

  • Stowers MD (1985) Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108

    Google Scholar 

  • Sutherland IW (2001a) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  PubMed  Google Scholar 

  • Sutherland IW (2001b) Microbial polysaccharides from Gram-negative bacteria. Int Dairy Res11:663–674

    Google Scholar 

  • Toida T, Chaidedgumjorn A, Linhardt RJ (2003) Structure and bioactivity of sulphated polysaccharides. Trends Glycosci Glycotechnol 15:29–46

    Google Scholar 

  • Ussery DW (2004) Genome update: 161 prokaryote genomes sequenced, and counting. Microbiology 150:261–263

    Google Scholar 

  • Uttaro AD, Ielpi L, Ugalde RA (1993) Galactose metabolism in Rhizobiaceae: characterization of Agrobacterium tumefaciens exoB mutants. J Gen Microbiol 139:1055–1062

    Google Scholar 

  • Voepel KC, Buller CS (1990) Formation of an extracellular energy reserve by Cellulomonas flavigena strain KU. J Ind Microbiol 5:131–138

    Google Scholar 

  • Williamson G, Damani K, Devenney P, Faulds CB, Morris VJ, Stevens BJ (1992) Mechanism of action of cyclic β-1,2-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions. J Bacteriol 174:7941–7947

    Google Scholar 

  • Yotsuzuka F (2001) Curdlan. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Dekker, New York, pp 737–757

    Google Scholar 

  • Young S-H, Robinson VA, Barger M, Frazer DG, Castranova V (2003) Partially opened triple helix is the biologically active conformation of 1,3-β-glucans that induces pulmonary inflammation in rats. J Toxicol Environ Health A 66:551–563

    Google Scholar 

  • Zhang HB, Nishinari K, Williams MAK, Foster TJ, Norton IT (2002) A molecular description of the gelation mechanism of curdlan. Int J Biol Macromol 30:7–16

    Google Scholar 

Download references

Acknowledgements

We thank Ann Matthysse for critically reading the manuscript. Work in the laboratories of B.A.S. and V.A.S. was supported, in part, by Australian Research Council Grants (AO 9925079, LX 0211339). M.M. was the recipient of an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntosh, M., Stone, B.A. & Stanisich, V.A. Curdlan and other bacterial (1→3)-β-d-glucans. Appl Microbiol Biotechnol 68, 163–173 (2005). https://doi.org/10.1007/s00253-005-1959-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1959-5

Keywords

Navigation