Skip to main content
Log in

Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two wood-dwelling ascomycetes, Xylaria hypoxylon and Xylaria polymorpha, were isolated from rotting beech wood. Lignin degradation was studied following the mineralization of a synthetic \({}^{{14}}{\text{C}}_{{\text{ $ \beta $ }}} \)-labelled lignin in solid and liquid media. Approximately 9% of the synthetic lignin was mineralized by X. polymorpha during the growth on beech wood meal, and the major fraction (65.5%) was polymerized into water- and dioxan-insoluble material. Both fungi produced laccase (up to 1,200 U l−1) in an agitated complex medium based on tomato juice; peroxidase activity (<80 U l−1) was only detected for X. polymorpha in soybean meal suspension. The enzymatic attack of X. polymorpha on beech wood resulted in the formation of three fractions of water-soluble lignocellulose fragments with molecular masses of 200, 30 (major fraction) and 3 kDa, as demonstrated by high-performance size exclusion chromatography. This fragment pattern differs considerably from that of the white-rot fungus Bjerkandera adusta, which preferentially released smaller lignocellulose fragments (0.8 kDa). The finding that X. polymorpha produced large lignocellulose fragments, along with the fact that high levels of hydrolytic enzymes (esterase 630 U l−1, xylanase 120 U l−1) were detected, indicates the cleavage of bonds between the lignin and hemicellulose moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications; a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:999–1010

    Google Scholar 

  • Bollag J-M, Sjoblad RD, Liu S-Y (1979) Characterization of an enzyme from Rhizoctonia praticola which polymerizes phenolic compounds. Can J Microbiol 25:229–233

    Article  PubMed  CAS  Google Scholar 

  • Brunow G, Raiskila S, Sipliä J (1998) The incorporation of 3,4-dichloroaniline, a pesticide metabolite, into dehydrogenation polymers of coniferyl alcohol (DHPs). Acta Chem Scand 52:1338–1342

    Article  CAS  Google Scholar 

  • Carbajo JM, Junca H, Terrón MC, González T, Yagüe S, Zapico E, González AE (2002) Tannic acid induces transcription of laccase gene cglccl in the white-rot fungus Coriolopsis gallica. Can J Microbiol 48:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Carnicero A, Trojanowski J, Falcón MA, De la Fuente G, Kharazipour A, Hüttermann A (1992) Lignin degrading capacities of several fungi imperfecti isolated from soils tested by the radiorespirometric method. Microbios 72:17–25

    CAS  Google Scholar 

  • Deighton N, Muckenschnabel I, Goodman BA, Williamson B (1999) Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant J 20:485–492

    Article  PubMed  CAS  Google Scholar 

  • Dekker FH, Barbosa AM (2001) The effect of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp. Enzyme Microb Technol 28:81–88

    Article  PubMed  CAS  Google Scholar 

  • Dunford HB (1999) Heme peroxidases. Wiley-VCH, New York

    Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  CAS  Google Scholar 

  • Haider K, Trojanowski J (1975) Decomposition of specifically 14C-labelled phenols and dehydropolymers as models for lignin degradation by soft and white rot fungi. Arch Microbiol 105:33–41

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white rot fungi—production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers. Vol 1, Lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. App Microbiol Biotechnol 61:374–379

    CAS  Google Scholar 

  • Li K, Helm RF (1995) Synthesis and rearrangement reactions of ester-linked lignin-carbohydrate model compounds. J Agric Food Chem 43:2098–2103

    Article  CAS  Google Scholar 

  • Monties B, Fukushima K (2001) Occurrence, function and biosynthesis of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers. Vol 1—lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 1–64

    Google Scholar 

  • Purdy RE, Kolattukudy RE (1973) Depolymerization of a hydroxyl fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani pisi. Isolation and some properties of the enzyme. Arch Biochem Biophys 159:61–69

    Article  PubMed  CAS  Google Scholar 

  • Robene-Soustrade I, Lung-Escarmant B, Bono JJ, Taris B (1992) Identification and partial characterization of an extracellular manganese-dependent peroxidase in Armillaria ostoyae and Armillaria mellea. Eur J For Pathol 22:227–236

    Article  Google Scholar 

  • Rodríguez A, Falcón MA, Carnicero A, Perestelo F, De la Fuente G, Trojanowski J (1996) Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl Microbiol Biotechnol 45:399–403

    Article  Google Scholar 

  • Rüttimann-Johnson CL, Salas L, Vicuña R, Kirk TK (1993) Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Appl Environ Microbiol 59:1792–1797

    Google Scholar 

  • Savory JG (1954) Breakdown of timber by ascomycetes and fungi imperfecti. Ann Appl Biol 41:336–357

    Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralising 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  PubMed  CAS  Google Scholar 

  • Schwarze EWMR, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees. Springer Berlin Heidelberg New York

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralization of 14C-labeled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JB, Crawford DL (1981) Lignin and glucan degradation by species of the Xylariaceae. Trans Br Mycol Soc 76:335–337

    Article  CAS  Google Scholar 

  • Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    Article  PubMed  CAS  Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60:569–575

    CAS  Google Scholar 

  • Wei DL, Chang SC, Wei YH, Lin YW, Chuang CL, Jong SC (1992) Production of cellulolytic enzymes from the Xylaria and Hypoxylon species of Xylariaceae. World J Microbiol Biotechnol 8:141–146

    Article  CAS  Google Scholar 

  • Williamson G, Kroon PA, Faulds CB (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology 144:2011–2023

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Federal State of Saxony (HWP program to C.L.), the German Federation of Industrial Cooperative Research Associations Otto von Guericke (project KF 0094004KMD3 to R.U. and M.H.), the Academy of Finland (project 52063 to M.H. and 106213 to K.T.S.) and the administration of the International Graduate School Zittau (Dr. R. Konschak). We thank U. Schneider and A. Elsner for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Liers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liers, C., Ullrich, R., Steffen, K.T. et al. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha . Appl Microbiol Biotechnol 69, 573–579 (2006). https://doi.org/10.1007/s00253-005-0010-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0010-1

Keywords

Navigation