Skip to main content

Advertisement

Log in

Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel hydrogen peroxide-dependent phenol oxidase (TAP) was isolated from the basidiomycete Termitomyces albuminosus. TAP is an extracellular monomeric enzyme with an estimated molecular weight of 67 kDa. The purified enzyme can oxidize various phenolic compounds in the presence of hydrogen peroxide, but cannot oxidize 3,4-dimethoxybenzyl (veratryl) alcohol. MnII was not required for catalysis by TAP. The optimum pH for TAP activity was 2.3, which is the lowest known optimum pH for a fungal phenol oxidase. The cDNA encoding TAP was cloned with reverse transcription-polymerase chain reaction (RT-PCR) using degenerate primers based on the N-terminal amino acid sequence of TAP and 5′ rapid amplification of cDNA ends (RACE)-PCR. The cDNA encodes a mature protein of 449 amino acids with a 55-amino-acid signal peptide. The deduced amino acid sequence of TAP showed 56% identity with dye-decolorizing heme peroxidase (DYP) from the ascomycete Geotrichum candidum Dec 1, but no homology with other known peroxidases from fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Abe T, Matsumoto T (1979) Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia. 3. Distribution and abundance of termites in Pasoh Forest Reserve. Jpn J Ecol 29:337–351

    Google Scholar 

  • Altschul SF, Madden TL, Schäer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Camarero S, Bockle B, Martin MJ, Martin AT (1996) Manganese-mediated lignin degradation by Pleurotus pulmonarius. Appl Environ Microbiol 62:1070–1072

    CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105

    Article  CAS  PubMed  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083

    CAS  PubMed  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidase involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) ACS Symposium,Washington D.C., pp 127–140

  • Grassé PP, Noirot C (1958) Le meule des termites chqmpignonnistes et sa signification symbiotique. Ann Sci Nat Zool Biol Anim 20:113–128

    Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol. 1. Wiley-VCH, Weinheim, pp 129–180

  • Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    CAS  PubMed  Google Scholar 

  • Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:373–381

    Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Nat Acad Sci U S A 96:1989–1994

    Article  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    CAS  PubMed  Google Scholar 

  • Kang SO, Shin KS, Han YH, Youn HD, Hah YC (1993) Purification and characterization of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochim Biophys Acta 1163:158–164

    CAS  PubMed  Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    CAS  PubMed  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  PubMed  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic "combustion": The microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    CAS  PubMed  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from lgninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    CAS  Google Scholar 

  • Lee Y, Shin K (2000) Isolation and characterization of the second extracellular peroxidase of the white-rot fungus Coriolus hirsutus. Mycologia 92:1057–1063

    CAS  Google Scholar 

  • Leontievsky A, Myasoedova N, Pozdnyakova N Golovleva L (1997) 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett 413:446–448

    Article  CAS  PubMed  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273: 15412–15417

    CAS  PubMed  Google Scholar 

  • Morita Y, Yamashita H, Mikami B, Iwamoto H, Aibara S, Terada M, Minami J (1988) Purification, crystallization, and characterization of peroxidase from Coprinus cinereus. J Biochem 103:693–699

    CAS  PubMed  Google Scholar 

  • Myers E, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–17

    CAS  PubMed  Google Scholar 

  • Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478

    CAS  PubMed  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Sacaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  PubMed  Google Scholar 

  • Shin K, Lee Y (2000) A novel extracellular peroxidase of the white-rot basidiomycete Coriolus hirsutus. Mycologia 92:537–544

    CAS  Google Scholar 

  • Shin K, Oh I, Kim C (1997) Production and purification of Remazol Brilliant Blue R decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl Environ Microbiol 63:1744–1748

    CAS  Google Scholar 

  • Sieber R, Leuthold RH (1981) Behaviour elements and their meaning in incipient laboratory colonies of the fungus-growing termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Sociaux 28:371–387

    Google Scholar 

  • Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417

    Article  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium Burds. J Biol Chem 261:1687-1693

    CAS  PubMed  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    CAS  Google Scholar 

  • White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577

    Article  CAS  PubMed  Google Scholar 

  • Wolfenden BS, Willson RL (1982) Radical-cations as reference chromogens in kinetic studies of one-electron transfer-reactions. Pulse radiolysis studies of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans II:805–812

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

Download references

Acknowledgements

This work was partially supported by grants for the Bioarchitect Research Program and the Eco Molecular Science Research Program from RIKEN. The authors are grateful to the Biomolecular Characterization Laboratory in RIKEN for amino acid sequence analysis, and C. Disyen and K. Sirihongsuwan for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Johjima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johjima, T., Ohkuma, M. & Kudo, T. Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus . Appl Microbiol Biotechnol 61, 220–225 (2003). https://doi.org/10.1007/s00253-003-1236-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1236-4

Keywords

Navigation