Skip to main content
Log in

Independent evolution of functional MHC class II DRB genes in New World bat species

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236

    PubMed  CAS  Google Scholar 

  • Axtner J, Sommer S (2011) Heligmosoides polygyrus infection is associated with lower MHC class II gene expression in Apodemys flavicolis: indication for immune suppression? Inf Gen Evol 2063–2071

  • Babik W, Radwan J (2007) Sequence diversity of MHC class II DRB genes in the bank vole Myodes glareolus. Acta Theriol 52(3):227–235

    Article  Google Scholar 

  • Baker ML, Tachedjian M, Wang LF (2010) Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding reservoir. Immunogenetics 62:173–184

    Article  PubMed  CAS  Google Scholar 

  • Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas). J Hered 101(4):448–460

    Article  PubMed  CAS  Google Scholar 

  • Bouchard S (2001) Sex discrimination and roost mate recognition by olfactory cues in the African bats, Mops condylurus and Chaerephon pumilus (Chiroptera: Molossidae). J Zool 254(1):109–117

    Article  Google Scholar 

  • Bowen L, Aldridge BM, Gulland F, Woo J, Van Bonn W, DeLong R, Stott JL, Johnson ML (2002) Molecular characterization of expressed DQA and DQB genes in the California sea lion (Zalophus californianus). Immunogenetics 54:332–347

    Article  PubMed  CAS  Google Scholar 

  • Bowen L, Aldridge BM, Gulland F, Van Bonn W, DeLong R, Melin S, Lowenstein LJ, Stott JL, Johnson ML (2004) Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californianus). Immunogenetics 56:12–27

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Bryja J, Galan M, Charbonnel N, Cosson J-F (2006) Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of DQA MHC class II gene in voles (Arvicolinae). Immunogenetics 58:191–202

    Article  PubMed  CAS  Google Scholar 

  • Burri R, Hirzel HN, Salamin N, Roulin A, Fumagalli L (2008) Evolutionary patterns of MHC class II B in owls and their implication for the understanding of avian MHC evolution. Mol Biol Evol 25(6):1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L (2010) Adaptive divergence of ancient duplicates in the avian MHC class II β. Mol Biol Evol 27(10):2360–2374

    Article  PubMed  CAS  Google Scholar 

  • Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19(3):531–545

    Article  PubMed  Google Scholar 

  • Dobson AP (2005) What links bats to emerging infectious diseases? Science 310:628–629

    Article  PubMed  CAS  Google Scholar 

  • Doxiadis GGM, de Groot N, de Groot NG, Rotmans G, deVos-Reouweler AJM, Bontrop RE (2010) Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force. Immunogenetics 62:137–147

    Article  PubMed  Google Scholar 

  • Ellis SA, Bontrop RE, Antczak DF, Ballingall K, Davies CJ, Kaufman J et al (2006) ISAG/IUIS-VIC Comparative MHC Nomenclature Committee report, 2005. Immunogenetics 57:953–958

    Article  PubMed  Google Scholar 

  • Field HE (2009) Bats and emerging zoonoses: henipaviruses and SARS. Zoonoses Public Hlth 56(6–7):278–284

    Article  CAS  Google Scholar 

  • Figuroa F, Günther G, Klein J (1988) MHC polymorphism predating speciation. Nature 335:265–67

    Article  Google Scholar 

  • Gannon WL, Sikes RS (2007) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 88:809

    Article  Google Scholar 

  • Goüy de Bellocq J, Suchentrunk F, Baird SEB, Schaschl H (2009) Evolutionary history of an MHC gene in two leporid species: characterisation of Mhc-DQA in the European brown hare and comparison with European rabbit. Immunogenetics 61:131–144

    Article  PubMed  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52(5):423–431

    Article  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplications. Proc R Soc Lond B 256:119–124

    Article  CAS  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL (2000) Evolution of introns and exons of class II major histocompatibility complex genes of vertebrates. Immunogenetics 51:473–486

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–373

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munroe HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  • Kennedy LJ, Ryvar R, Gaskell RM, Addie DD, Willoughby K, Carter SD et al (2002) Sequence analyses of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics 54:348–352

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa EF, Tsuda TT, Sumiyama D, Naruse TK, Fukuda M, Kurita M, Wilson RP, LeMaho Y, Miller GD, Tsuda M, Murata K, Kulski JK, Inoko H (2009) Trans-species polymorphism of the MHC class II DRB-like gene in banded penguins (genus Spheniscus). Immunogenetics 61:341–352

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Human Immunol 19:155–162

    Article  CAS  Google Scholar 

  • Klein J, Sato A, Nikolaides N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304

    Article  PubMed  CAS  Google Scholar 

  • Kriener K, O’hUigin C, Tichy H, Klein J (2000) Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics 51:69–178

    Article  Google Scholar 

  • Kriener K, O’hUigin C, Klein J (2001) Independent origin of functional MHC class II genes in humans and new world monkeys. Hum Immun 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kumanovics A, Takada T, Fischer Lindahl K (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657

    Article  PubMed  CAS  Google Scholar 

  • Kunz TH, Braun de Torres E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–3

    Article  PubMed  Google Scholar 

  • Kupfermann H, Satta Y, Takahata N, Tichy H, Klein J (1999) Evolution of MHC-DRB introns: implication for the origin of primates. J Mol Evol 48:663–674

    Article  PubMed  CAS  Google Scholar 

  • Kwak J, Opiekun MC, Matsumura K, Preti G, Yamazaki K, Beauchamp GK (2009) Major histocompatibility complex-regulated odortypes: peptide-free urinary volatile signals. Phys Behav 96:184–188

    Article  CAS  Google Scholar 

  • Lewis-Oritt N, Van den Busche RA, Baker RJ (2001) Molecular evidence for evolution of piscivory in Noctilio (Chiroptera: Noctilionidae). J Mammal 82:748–759

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Mansai SP, Innan H (2010) The power of the methods for detecting interlocus gene conversion. Genetics 184:517–572

    Article  PubMed  CAS  Google Scholar 

  • Mayer F, Brunner A (2007) Non-neutral evolution of the major histocompatibility complex class II gene DRB1 in the sac-winged bat Saccopteryx bilineata. Heredity 99:257–264

    Article  PubMed  CAS  Google Scholar 

  • Mayer WE, Jonker M, Klein D, Ivanyi P, van Seventer G, Klein J (1988) Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO 7(9):2765–2774

    CAS  Google Scholar 

  • Mikko S, Roed K, Schmutz S, Andersson L (1999) Monomorphism and polymorphism at MHC DRB loci in domestic and wild ruminants. Immunol Rev 167:169–178

    Article  PubMed  CAS  Google Scholar 

  • Musolf K, Meyer-Lucht Y, Sommer S (2004) Evolution of MHC-DRB class II polymorphism in the genus Apodemus and a comparison of DRB sequences within the family Muridae (Mammalia: Rodentia). Immunogenetics 56(6):420–426

    Article  PubMed  CAS  Google Scholar 

  • Nemeth E, Baird AW, O’Farrelly C (2009) Microanatomy of the liver immune system. Semin Immunopathol 31:333–343

    Article  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    PubMed  CAS  Google Scholar 

  • Nei M, Hughes AL (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuij K, Aizawa M, Sasazuki T (eds) 11th Histocompatibility Workshop and Conference. Oxford University Press, Oxford

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • O’hUigin C (1995) Quantifying the degree of convergence in primate MHC-DRB genes. Immunol Rev 143:123–140

    Article  PubMed  Google Scholar 

  • Otha T (1999) Effect of gene conversion on polymorphic patterns at major histocompatibility complex loci. Immunol Rev 167:319–325

    Article  Google Scholar 

  • Penn DJ, Potts WK (1998) How do major histocompatibility complex genes influence odour and mating preference? Adv Immunol 69:411–436

    Article  PubMed  CAS  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19(5):708–717

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH, Langefors A (2005) Inter- and intralocus recombination drive MHC class II B gene diversification in a teleost, three-spined stickleback Gasterosteus aculeatus. J Mol Evol 61:531–545

    Article  PubMed  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup HM (2003) Relative roles of mutation and recombination in generating allelic polymorphism at a MHC class II locus in Peromyscus maniculatus. Genet Res Camb 82:89–99

    Article  CAS  Google Scholar 

  • Richman AD, Herrera LG, Ortega-Garcia S, Flores-Martinez JJ, Arroyo-Cabrales J, Morales-Malacara JB (2010) Class II DRB polymorphism and sequence diversity in two vesper bats in the genus Myotis. Immunogenetics 37(5):401–405

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Santos PSC, Kellermann T, Uchanska-Ziegler B, Ziegler A (2010) Genomic architecture of MHC linked odorant receptor gene repertoires among 16 vertebrate species. Immunogenetics 62(9):569–584

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion. Distribution by the author, Dept of Mathematics, Washington University, St Louis (http://www.math.wustl.edu/-sawyer)

  • Schad J, Sommer S, Ganzhorn J (2004) MHC variability of a small lemur in the littoral forest fragments of south-eastern Madagascar. Conserv Genet 5:299–309

    Article  CAS  Google Scholar 

  • Schad J, Dechmann DKN, Voigt CC, Sommer S (2011) MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris. Heredity 107:115–126

    Article  PubMed  CAS  Google Scholar 

  • Schaschl H, Suchentrunk F, Hammer S, Goodman SJ (2005) Recombination and the origin of sequence diversity in the MHC class II DRB in chamois (Rupicapra spp.). Immunogenetics 57:108–115

    Article  PubMed  CAS  Google Scholar 

  • Schaschl H, Wandeler P, Suchentrunk F, Obexer-Ruff G, Goodman SJ (2006) Selection and recombination drive evolution of MHC class II DRB diversity in ungulates. Heredity 97:427–437

    Article  PubMed  CAS  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B 277:979–988

    Article  CAS  Google Scholar 

  • Srithayakumar V, Castillo S, Mainguy J, Kyle CJ (2012) Evidence for evolutionary convergence at MHC in two broadly distributed mesocarnivores. Immunogenetics. doi:10.1007/s00251.011-0588-7

  • Stern LJ, Brown JH, Jardetzky JCG, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221

    Article  PubMed  CAS  Google Scholar 

  • Studier EH, Lavoie KH (1984) Microbial involvement in scent production in noctilionid bats. J Mammal 65:711–714

    Article  Google Scholar 

  • Suárez CF, Patarroyo ME, Trujillo E, Estupiñán M, Baquero JE, Parra C, Rodriguez R (2006) Owl monkey MHC DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics 58:542–558

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J (1995) Both man & bird & beast: comparative organization of MHC genes. Immunogenetics 41:1–17

    Article  PubMed  CAS  Google Scholar 

  • Vilamiu RP, Correa MM, Pessoa LM, Oliveira JA, Oliveira LFB (2010) The karyotype of Noctilio albiventris (Chiroptera: Noctilionidae) from Brazil and its taxonomic implications. Mastozool Neotrop 17(1):219–224

    Google Scholar 

  • Virtue ER, Marsh GA, Baker ML, Wang LF (2011) Interferon production and signalling pathways are antagonized during Henipavirus infection in fruit bat cell lines. Plos One 6(7):e22488

    Article  PubMed  CAS  Google Scholar 

  • Voigt CC, van Helversen O (1999) Storage and display of odour by male Saccopteryx bilineata (Chiroptera, Emballonuridae). Behav Ecol Sociobiol 47:29–40

    Article  Google Scholar 

  • Wei K, Zhang Z, Wang X, Zhang W, Xu X, Shen F, Yue B (2010) Lineage pattern, trans-species polymorphism, and selection pressure among the major lineages of feline MHC-DRB peptide-binding region. Immunogenetics 62:307–317

    Article  PubMed  CAS  Google Scholar 

  • Wibbelt G, Moore M, Schountz T, Voigt CC (2010) Emerging diseases in Chiroptera: why bats? Biol Lett 6:438–440

    Article  PubMed  Google Scholar 

  • Worthington-Wilmer J, Baratt E (1996) A non-lethal method of tissue-sampling for genetic studies of chiropterans. Bat Res News 37:1–3

    Google Scholar 

  • Xu SX, Chen BY, Zhou KY, Yang G (2008) High sequence similarity at three MHC loci between baiji and finless porpoise: trans-species or convergent evolution? Mol Phylogenet Evol 47:36–44

    Article  PubMed  CAS  Google Scholar 

  • Xu SX, Ren WH, Li SZ, Wei FW, Zhou KY, Yang G (2009) Sequence polymorphism and evolution of three Cetacean MHC genes. J Mol Evol 69:260–275

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  • Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Yeager M, Hughes AL (1999) Evolution of the mammalian MHC: natural selection, recombination and convergent evolution. Immun Rev 167:45–58

    Article  PubMed  CAS  Google Scholar 

  • Yuhki N, Beck T, Stephens R, Neelam B, O’Brien ST (2007) Comparative genomic structure of human, dog and cat MHC: HLA, DLA, and FLA. J Hered 98(5):390–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank PD Dr. Karl-Heinz Esser of the Tierärztliche Hochschule Hannover, Germany for providing a specimen of C. perspicillata for our cDNA analyses. We thank Anke Schmidt for technical laboratory assistance and Aines Castro-Prieto and Pablo Santos for helpful comments on earlier versions of the manuscript. We further thank Charles Gunn for linguistic advice as well as an anonymous reviewer for the constructive scientific comments on the former version of the manuscript. All capture and handling of animals as well as collection and export of samples was done in concordance with national laws. Field work and animal handling was carried out according to the protocol approved by the Smithsonian Tropical Research Institute—Institutional Animal Care and Use Committee (STRI-IUCAC). Permits were issued from the Panamanian authority Autoridad National del Ambiente (ANAM, SE/A 98-08, SEX/A78-08, SEX/A-138-08) and from the Ministerio del Ambiente y Energia, Costa Rica (MINAE, Permit Number: No 183-2008-SINAC). This work was supported by the Leibniz Institute for Zoo and Wildlife Research (IZW), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sommer.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schad, J., Voigt, C.C., Greiner, S. et al. Independent evolution of functional MHC class II DRB genes in New World bat species. Immunogenetics 64, 535–547 (2012). https://doi.org/10.1007/s00251-012-0609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0609-1

Keywords

Navigation