Skip to main content

Advertisement

Log in

Contrasting evolution of diversity at two disease-associated chicken genes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2009

Abstract

There have been significant evolutionary pressures on the chicken during both its speciation and its subsequent domestication by man. Infectious diseases are expected to have exerted strong selective pressures during these processes. Consequently, it is likely that genes associated with disease susceptibility or resistance have been subject to some form of selection. Two genes involved in the immune response (interferon-γ and interleukin 1-β) were selected for sequencing in diverse chicken populations from Pakistan, Sri Lanka, Bangladesh, Kenya, Senegal, Burkina Faso and Botswana, as well as six outgroup samples (grey, green, red and Ceylon jungle fowl and grey francolin and bamboo partridge). Haplotype frequencies, tests of neutrality, summary statistics, coalescent simulations and phylogenetic analysis by maximum likelihood were used to determine the population genetic characteristics of the genes. Networks indicate that these chicken genes are most closely related to the red jungle fowl. Interferon-γ had lower diversity and considerable coding sequence conservation, which is consistent with its function as a key inflammatory cytokine of the immune response. In contrast, the pleiotropic cytokine interleukin 1-β had higher diversity and showed signals of balancing selection moderated by recombination, yielding high numbers of diverse alleles, possibly reflecting broader functionality and potential roles in more diseases in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2(10):e286

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    PubMed  CAS  Google Scholar 

  • Ardell DH (2004) SCANMS: adjusting for multiple comparisons in sliding window neutrality tests. Bioinformatics 20(12):1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Balkissoon D, Staines K, McCauley J, Wood J, Young J, Kaufman J, Butter C (2007) Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 59(8):687–691

    Article  PubMed  CAS  Google Scholar 

  • Berlin S, Qu L, Li X, Yang N, Ellegren H (2008) Positive diversifying selection in avian Mx genes. Immunogenetics 60(11):689–697

    Article  PubMed  CAS  Google Scholar 

  • Betrán E, Rozas J, Navarro A, Barbadilla A (1997) The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics 146(1):89–99

    PubMed  Google Scholar 

  • Bratt J, Palmblad J (1997) Cytokine-induced neutrophil-mediated injury of human endothelial cells. J Immunol 159(2):912–918

    PubMed  CAS  Google Scholar 

  • De Nardo D, Masendycz P, Ho S, Cross M, Fleetwood AJ, Reynolds EC, Hamilton JA, Scholz GM (2005) A central role for the Hsp90.Cdc37 molecular chaperone module in interleukin-1 receptor-associated-kinase-dependent signaling by Toll-like receptors. J Biol Chem 280(11):9813–9822

    Article  PubMed  CAS  Google Scholar 

  • Depaulis F, Veuille M (1998) Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 15(12):1788–1790

    PubMed  CAS  Google Scholar 

  • Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4(5):e1000071

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2005) The avian genome uncovered. Trends Ecol Evol 20(4):180–186

    Article  PubMed  Google Scholar 

  • Eriksson J, Larson G, Gunnarsson U, Bed’hom B, Tixier-Boichard M, Strömstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L (2008) Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet 4(2):e1000010

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred II. Error probabilities. Genome Res 8(3):186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8(3):175–185

    PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155(3):1405–1413

    PubMed  CAS  Google Scholar 

  • Ferrer-Costa C, Gelpi J, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21:3176–3178

    Article  PubMed  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925

    PubMed  CAS  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709

    PubMed  CAS  Google Scholar 

  • Fumihito A, Miyake T, Sumi S, Takada M, Ohno S, Kondo N (1996) One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci USA 91(26):12505–12509

    Article  Google Scholar 

  • Fumihito A, Miyake T, Takada M, Shingu R, Endo T, Gojobori T, Kondo N, Ohno S (1994) Monophyletic origin and unique dispersal patterns of domestic fowls. Proc Natl Acad Sci USA 93(13):6792–67925

    Article  Google Scholar 

  • Goetschy JF, Zeller H, Content J, Horisberger MA (1989) Regulation of the interferon-inducible IFI-78K gene, the human equivalent of the murine Mx gene, by interferons, double-stranded RNA, certain cytokines, and viruses. J Virol 63(6):2616–2622

    PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8(3):195–202

    PubMed  CAS  Google Scholar 

  • Gyorfy Z, Ohnemus A, Kaspers B, Duda E, Staeheli P (2003) Truncated chicken interleukin-1beta with increased biologic activity. J Interferon Cytokine Res 23(5):223–228

    Article  PubMed  CAS  Google Scholar 

  • Hou ZC, Xu GY, Su Z, Yang N (2007) Purifying selection and positive selection on the myxovirus resistance gene in mammals and chickens. Gene 396(1):188–195

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (1987) Estimating the recombination parameter of a finite population model without selection. Genet Res 50(3):245–250

    PubMed  CAS  Google Scholar 

  • Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159(4):1805–1817

    PubMed  CAS  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18(2):337–338

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111(1):147–164

    PubMed  CAS  Google Scholar 

  • Hughes AL, Packer B, Welch R, Chanock SJ, Yeager M (2005) High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics 57(11):821–827

    Article  PubMed  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004a) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • International Chicken Polymorphism Map Consortium (2004b) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722

    Article  CAS  Google Scholar 

  • Janardhana V, Ford ME, Bruce MP, Broadway MM, O’Neil TE, Karpala AJ, Asif M, Browning GF, Tivendale KA, Noormohammadi AH, Lowenthal JW, Bean AG (2007) IFN-gamma enhances immune responses to E. coli infection in the chicken. J Interferon Cytokine Res 27(11):937–946

    Article  PubMed  CAS  Google Scholar 

  • Jensen JD, Wong A, Aquadro CF (2007) Approaches for identifying targets of positive selection. Trends Genet 23(11):568–577

    Article  PubMed  CAS  Google Scholar 

  • Johnson PL, Slatkin M (2005) Inference of population genetic parameters in metagenomics: a clean look at messy data. Genome Res 16(10):1320–1327

    Article  CAS  Google Scholar 

  • Kaiser P (2007) The avian immune genome—a glass half-full or half-empty? Cytogenet Genome Res 117:221–230

    Article  PubMed  CAS  Google Scholar 

  • Kaiser P, Rothwell L, Goodchild M, Bumstead N (2004) The chicken proinflammatory cytokines interleukin-1beta and interleukin-6: differences in gene structure and genetic location compared with their mammalian orthologues. Anim Genet 35(3):169–175

    Article  PubMed  CAS  Google Scholar 

  • Kaiser VB, van Tuinen M, Ellegren H (2007) Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds. Mol Biol Evol 24(1):338–347

    Article  PubMed  CAS  Google Scholar 

  • Kanginakudru S, Metta M, Jakati RD, Nagaraju J (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol Biol 8:174

    Article  PubMed  CAS  Google Scholar 

  • Kelly JK (1997) A test of neutrality based on interlocus associations. Genetics 146(3):1197–1206

    PubMed  CAS  Google Scholar 

  • Kim H, Schmidt CJ, Decker KS, Emara MG (2003) A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST data. Anim Genet 34(4):249–254

    Article  PubMed  CAS  Google Scholar 

  • Kogut MH, Rothwell L, Kaiser P (2005a) IFN-gamma priming of chicken heterophils upregulates the expression of proinflammatory and Th1 cytokine mRNA following receptor-mediated phagocytosis of Salmonella enterica serovar enteritidis. J Interferon Cytokine Res 25(2):73–81

    Article  PubMed  CAS  Google Scholar 

  • Kogut MH, He H, Kaiser P (2005b) Lipopolysaccharide binding protein/CD14/ TLR4-dependent recognition of salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Anim Biotechnol 16(2):165–181

    Article  PubMed  CAS  Google Scholar 

  • Kogut MH, Swaggerty C, He H, Pevzner I, Kaiser P (2006) Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes Infect 8(7):1866–1874

    Article  PubMed  CAS  Google Scholar 

  • Lee BT, Tan TW, Ranganathan S (2003) MGAlignIt: a web service for the alignment of mRNA/EST and genomic sequences. Nucleic Acids Res 31(13):3533–3536

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Qu LJ, Yao JF, Yang N (2006) Skewed allele frequencies of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations. Poult Sci 85(7):1327–1329

    PubMed  CAS  Google Scholar 

  • Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol 38(1):12–19

    Article  PubMed  CAS  Google Scholar 

  • Long JE, Huang LN, Qin ZQ, Wang WY, Qu D (2004) IFN-gamma increases efficiency of DNA vaccine in protecting ducks against infection. World J Gastroenterol 11(32):4967–4973

    Google Scholar 

  • Madge LA, Pober JS (2000) A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 275(20):15458–15465

    Article  PubMed  CAS  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160(3):1231–1241

    PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25(14):2745–2751

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  • Nishibori M, Shimogiri T, Hayashi T, Yasue H (2005) Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet 36(5):367–375

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  PubMed  CAS  Google Scholar 

  • Okamura M, Lillehoj HS, Raybourne RB, Babu US, Heckert RA (2004) Cell-mediated immune responses to a killed Salmonella enteritidis vaccine: lymphocyte proliferation, T-cell changes and interleukin-6 (IL-6), IL-1, IL-2, and IFN-gamma production. Comp Immunol Microbiol Infect Dis 27(4):255–272

    Article  PubMed  CAS  Google Scholar 

  • Quesada H, Ramirez UE, Rozas J, Aguade M (2006) Large-scale adaptive hitchhiking upon high recombination in Drosophila simulans. Genetics 165(2):895–900

    Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–900

    Article  PubMed  CAS  Google Scholar 

  • Ronald J, Akey JM (2005) Genome-wide scans for loci under selection in humans. Hum Genomics 2(2):113–125

    PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15(2):174–175

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sadeyen JR, Trotereau J, Velge P, Marly J, Beaumont C, Barrow PA, Bumstead N, Lalmanach AC (2004) Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 6(14):1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis, ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva

  • Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  PubMed  CAS  Google Scholar 

  • Schaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D (2005) Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15(11):1576–1583

    Article  PubMed  CAS  Google Scholar 

  • Simon A, Fäh J, Haller O, Staeheli P (1991) Interferon-regulated Mx genes are not responsive to interleukin-1, tumor necrosis factor, and other cytokines. J Virol 65(2):968–971

    PubMed  CAS  Google Scholar 

  • Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA, Jones MA (2004) Campylobacter jejuni-induced cytokine responses in avian cells. Infect Immun 73(4):2094–2100

    Article  CAS  Google Scholar 

  • Spangelo BL, Farrimond DD, Pompilius M, Bowman KL (2000) Interleukin-1 beta and thymic peptide regulation of pituitary and glial cell cytokine expression and cellular proliferation. Ann N Y Acad Sci 917:597–607

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Sloan JS, Robertson PD, Scheet P, Nickerson DA (2006) Automating sequence-based detection and genotyping of SNPs from diploid samples. Nat Genet. 38(3):375–381

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105(2):437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregation sites. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Weining KC, Sick C, Kaspers B, Staeheli P (1998) A chicken homolog of mammalian interleukin-1 beta: cDNA cloning and purification of active recombinant protein. Eur J Biochem 258(3):994–1000

    Article  PubMed  CAS  Google Scholar 

  • West B, Zhou BX (1989) Did chickens go north? New evidence for domestication. World’s Poult Sci J 45(3):205–218

    Article  Google Scholar 

  • Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60(5):233–247

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genet Dev 12:688–694

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Lu Z, Wang A (2001) Study of adaptive mutations in Salmonella typhimurium by using a super-repressing mutant of a trans regulatory gene purR. Mutat Res 484(1–2):95–102

    PubMed  CAS  Google Scholar 

  • Ye X, Avendano S, Dekkers JC, Lamont SJ (2006) Association of twelve immune-related genes with performance of three broiler lines in two different hygiene environments. Poult Sci 85(9):1555–1569

    PubMed  CAS  Google Scholar 

  • Zhou H, Buitenhuis AJ, Weigend S, Lamont SJ (2001) Candidate gene promoter polymorphisms and antibody response kinetics in chickens: interferon-gamma, interleukin-2, and immunoglobulin light chain. Poult Sci 80(12):1679–1689

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Government of Ireland Department of Agriculture FIRM grant 04/R + D/D/295. We would like to thank the Department of Ornithology and Mammalogy, Californian Academy of Sciences (San Francisco, USA) and Donal Campion, Wallslough Farm (Co. Kilkenny, Ireland) for bird samples and Karsten Hokamp (Trinity College, University of Dublin) for help in implementing LDhat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Bradley.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00251-009-0367-x

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

(DOC 3.40 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downing, T., Lynn, D.J., Connell, S. et al. Contrasting evolution of diversity at two disease-associated chicken genes. Immunogenetics 61, 303–314 (2009). https://doi.org/10.1007/s00251-009-0359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0359-x

Keywords

Navigation