Skip to main content
Log in

Comparison of allergic lung disease in three mouse strains after systemic or mucosal sensitization with ovalbumin antigen

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brewer JP, Kisselgof AB, Martin TR (1999) Genetic variability in pulmonary physiological, cellular, and antibody responses to antigen in mice. Am J Respir Crit Care Med 160(4):1150–1156

    PubMed  CAS  Google Scholar 

  • Corry DB et al (1996) Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 183(1):109–117. doi:10.1084/jem.183.1.109

    Article  PubMed  CAS  Google Scholar 

  • Coyle AJ et al (1996) Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a non-anaphylactogenic anti-IgE antibody. J Exp Med 183(4):1303–1310. doi:10.1084/jem.183.4.1303

    Article  PubMed  CAS  Google Scholar 

  • de Heer HJ et al (2004) Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200(1):89–98. doi:10.1084/jem.20040035

    Article  PubMed  Google Scholar 

  • Eisenbarth SC et al (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196(12):1645–1651. doi:10.1084/jem.20021340

    Article  PubMed  CAS  Google Scholar 

  • Forecasted State-Specific Estimates of Self-Reported Asthma Prevalence—United States. 1998, CDC. pp 1022–1025

  • Foster PS et al (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183(1):195–201. doi:10.1084/jem.183.1.195

    Article  PubMed  CAS  Google Scholar 

  • Gavett SH et al (2003) World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice. Environ Health Perspect 111(7):981–991

    PubMed  Google Scholar 

  • Gelfand EW (2002) Pro: mice are a good model of human airway disease. Am J Respir Crit Care Med 166(1):5–6. doi:10.1164/rccm.2204023, discussion 7–8

    Article  PubMed  Google Scholar 

  • Gerhold K et al (2002) Endotoxins prevent murine IgE production, T(H) 2 immune responses, and development of airway eosinophilia but not airway hyperreactivity. J Allergy Clin Immunol 110(1):110–116. doi:10.1067/mai.2002.125831

    Article  PubMed  CAS  Google Scholar 

  • Gilmour MI et al (2004) Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. J Air Waste Manag Assoc 54(3):286–295

    PubMed  CAS  Google Scholar 

  • Hamelmann E et al (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156(3 Pt 1):766–775

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Vieths S, Haustein D (1997) Biologic allergen assay for in vivo test allergens with an in vitro model of the murine type I reaction. J Allergy Clin Immunol 99(2):227–232. doi:10.1016/S0091-6749(97) 70101-5

    Article  PubMed  CAS  Google Scholar 

  • Hopfenspirger MT, Agrawal DK (2002) Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice. J Immunol 168(5):2516–2522

    PubMed  CAS  Google Scholar 

  • Ichinose T et al (1997) Murine strain differences in allergic airway inflammation and immunoglobulin production by a combination of antigen and diesel exhaust particles. Toxicology 122(3):183–192. doi:10.1016/S0300-483X(97) 00096-6

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Iijima K, Kita H (2003) Marked airway eosinophilia prevents development of airway hyper-responsiveness during an allergic response in IL-5 transgenic mice. J Immunol 170(11):5756–5763

    PubMed  CAS  Google Scholar 

  • Kumar RK, Foster PS (2002) Modeling allergic asthma in mice: pitfalls and opportunities. Am J Respir Cell Mol Biol 27(3):267–272

    PubMed  CAS  Google Scholar 

  • Lack G et al (1995) Transfer of immediate hypersensitivity and airway hyperresponsiveness by IgE-positive B cells. Am J Respir Crit Care Med 152(6 Pt 1):1765–1773

    PubMed  CAS  Google Scholar 

  • Leong KP, Huston DP (2001) Understanding the pathogenesis of allergic asthma using mouse models. Ann Allergy Asthma Immunol 87(2):96–109 quiz 110

    Article  PubMed  CAS  Google Scholar 

  • Mehlhop PD et al (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 94(4):1344–1349. doi:10.1073/pnas.94.4.1344

    Article  PubMed  CAS  Google Scholar 

  • O'Byrne PM, Inman MD, Parameswaran K (2001) The trials and tribulations of IL-5, eosinophils, and allergic asthma. J Allergy Clin Immunol 108(4):503–508. doi:10.1067/mai.2001.119149

    Article  PubMed  Google Scholar 

  • Ostroukhova M et al (2004) Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 114(1):28–38

    PubMed  CAS  Google Scholar 

  • Singh P et al (2004) Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ Health Perspect 112(8):820–825

    PubMed  CAS  Google Scholar 

  • Steerenberg PA et al (2003) Optimization of route of administration for coexposure to ovalbumin and particle matter to induce adjuvant activity in respiratory allergy in the mouse. Inhal Toxicol 15(13):1309–1325. doi:10.1080/08958370390241786

    Article  PubMed  CAS  Google Scholar 

  • Taketo M et al (1991) FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc Natl Acad Sci USA 88(6):2065–2069. doi:10.1073/pnas.88.6.2065

    Article  PubMed  CAS  Google Scholar 

  • Wanner A et al (1990) NHLBI Workshop Summary. Models of airway hyperresponsiveness. Am Rev Respir Dis 141(1):253–257

    PubMed  CAS  Google Scholar 

  • Whitehead GS et al (2003) Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol 285(1):L32–L42

    PubMed  CAS  Google Scholar 

  • Wills-Karp M (2000) Murine models of asthma in understanding immune dysregulation in human asthma. Immunopharmacology 48(3):263–268. doi:10.1016/S0162-3109(00) 00223-X

    Article  PubMed  CAS  Google Scholar 

  • Wills-Karp M, Ewart SL (1997) The genetics of allergen-induced airway hyperresponsiveness in mice. Am J Respir Crit Care Med 156(4 Pt 2):S89–S96

    PubMed  CAS  Google Scholar 

  • Wills-Karp M et al (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–2261. doi:10.1126/science.282.5397.2258

    Article  PubMed  CAS  Google Scholar 

  • Zosky GR, Sly PD (2007) Animal models of asthma. Clin Exp Allergy 37(7):973–988. doi:10.1111/j.1365-2222.2007.02740.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & EPA disclosure

We thank Mary Daniels, Elizabeth Boykin James Lehmann and Judy Richards for their technical assistance. The project described was supported by CEMALB of UNC-CA through a cooperative agreement with the U.S. EPA (#R82952201). Its content are solely the responsibility of the authors and do not necessarily represent the official views of the U.S. EPA. This paper has been reviewed by the U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ian Gilmour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Gilmour, M.I. Comparison of allergic lung disease in three mouse strains after systemic or mucosal sensitization with ovalbumin antigen. Immunogenetics 61, 199–207 (2009). https://doi.org/10.1007/s00251-008-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0353-8

Keywords

Navigation