Skip to main content

Advertisement

Log in

Genetics-squared: combining host and pathogen genetics in the analysis of innate immunity and bacterial virulence

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The interaction of bacterial pathogens with their hosts’ innate immune systems can be extremely complex and is often difficult to disentangle experimentally. Using mouse models of bacterial infections, several laboratories have successfully applied genetic approaches to identify novel host genes required for innate immune defense. In addition, a variety of creative bacterial genetic schemes have been developed to identify key bacterial genes involved in triggering or evading host immunity. In cases where both the host and pathogen are amenable to genetic manipulation, a combination of host and pathogen genetic approaches can be used. Focusing on bacterial infections of mice, this review summarizes the benefits and limitations of applying genetic analysis to the study of host–pathogen interactions. In particular, we consider how prokaryotic and eukaryotic genetic strategies can be combined, or “squared,” to yield new insights in host–pathogen biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–78

    PubMed  CAS  Google Scholar 

  • Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Nunez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF. J Biol Chem 281:35217–35223

    PubMed  CAS  Google Scholar 

  • Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533

    PubMed  CAS  Google Scholar 

  • Badarinarayana V, Estep PW 3rd, Shendure J, Edwards J, Tavazoie S, Lam F, Church GM (2001) Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 19:1060–1065

    PubMed  CAS  Google Scholar 

  • Balachandran P, Dragone L, Garrity-Ryan L, Lemus A, Weiss A, Engel J (2007) The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence. J Clin Invest 117:419–427

    PubMed  CAS  Google Scholar 

  • Bancroft GJ, Kelly JP (1994) Macrophage activation and innate resistance to infection in SCID mice. Immunobiology 191:424–431

    PubMed  CAS  Google Scholar 

  • Barsig J, Kaufmann SH (1997) The mechanism of cell death in Listeria monocytogenes-infected murine macrophages is distinct from apoptosis. Infect Immun 65:4075–4081

    PubMed  CAS  Google Scholar 

  • Beckers MC, Yoshida S, Morgan K, Skamene E, Gros P (1995) Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm Genome 6:540–545

    PubMed  CAS  Google Scholar 

  • Bernstein-Hanley I, Balsara ZR, Ulmer W, Coers J, Starnbach MN, Dietrich WF (2006a) Genetic analysis of susceptibility to Chlamydia trachomatis in mouse. Genes Immun 7:122–129

    PubMed  CAS  Google Scholar 

  • Bernstein-Hanley I, Coers J, Balsara ZR, Taylor GA, Starnbach MN, Dietrich WF (2006b) The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc Natl Acad Sci USA 103:14092–14097

    PubMed  CAS  Google Scholar 

  • Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K (2006) Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24:353–389

    PubMed  CAS  Google Scholar 

  • Boyartchuk VL, Broman KW, Mosher RE, D’Orazio SE, Starnbach MN, Dietrich WF (2001) Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet 27:259–260

    PubMed  CAS  Google Scholar 

  • Boyartchuk V, Rojas M, Yan BS, Jobe O, Hurt N, Dorfman DM, Higgins DE, Dietrich WF, Kramnik I (2004) The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in immunodeficient mice. J Immunol 173:5112–5120

    PubMed  CAS  Google Scholar 

  • Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    PubMed  CAS  Google Scholar 

  • Bradley DJ (1974) Letter: genetic control of natural resistance to Leishmania donovani. Nature 250:353–354

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kirkley J (1977) Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol 30:119–129

    PubMed  CAS  Google Scholar 

  • Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM (2007) The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177:265–275

    PubMed  CAS  Google Scholar 

  • Brown NF, Wickham ME, Coombes BK, Finlay BB (2006) Crossing the line: selection and evolution of virulence traits. PLoS Pathog 2:e42

    PubMed  Google Scholar 

  • Buer J, Balling R (2003) Mice, microbes and models of infection. Nat Rev Genet 4:195–205

    PubMed  CAS  Google Scholar 

  • Burrack LS, Higgins DE (2007) Genomic approaches to understanding bacterial virulence. Curr Opin Microbiol 10:4–9

    PubMed  CAS  Google Scholar 

  • Camilli A, Mekalanos JJ (1995) Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 18:671–683

    PubMed  CAS  Google Scholar 

  • Caron J, Lariviere L, Nacache M, Tam M, Stevenson MM, McKerly C, Gros P, Malo D (2006) Influence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis infection in mice is associated with Th polarization. Infect Immun 74:2787–2802

    PubMed  CAS  Google Scholar 

  • Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200:535–540

    PubMed  CAS  Google Scholar 

  • Caspary T, Anderson KV (2006) Uncovering the uncharacterized and unexpected: unbiased phenotype-driven screens in the mouse. Dev Dyn 235:2412–2423

    PubMed  CAS  Google Scholar 

  • Chan K, Kim CC, Falkow S (2005) Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun 73:5438–5449

    PubMed  CAS  Google Scholar 

  • Chang YC, Segal BH, Holland SM, Miller GF, Kwon-Chung KJ (1998) Virulence of catalase-deficient Aspergillus nidulans in p47(phox)−/− mice. Implications for fungal pathogenicity and host defense in chronic granulomatous disease. J Clin Invest 101:1843–1850

    Article  PubMed  CAS  Google Scholar 

  • Chiang SL, Mekalanos JJ, Holden DW (1999) In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    PubMed  CAS  Google Scholar 

  • Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9(10):2315–2541

    Google Scholar 

  • Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168:953–959

    PubMed  CAS  Google Scholar 

  • Cordoba-Rodriguez R, Fang H, Lankford CS, Frucht DM (2004) Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1beta and IL-18. J Biol Chem 279:20563–20566

    PubMed  CAS  Google Scholar 

  • Coutinho A, Meo T (1978) Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 7:17–24

    Google Scholar 

  • Cuellar-Mata P, Jabado N, Liu J, Furuya W, Finlay BB, Gros P, Grinstein S (2002) Nramp1 modifies the fusion of Salmonella typhimurium-containing vacuoles with cellular endomembranes in macrophages. J Biol Chem 277:2258–2265

    PubMed  CAS  Google Scholar 

  • Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF (2003) The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966

    PubMed  CAS  Google Scholar 

  • Day WA Jr, Rasmussen SL, Carpenter BM, Peterson SN, Friedlander AM (2007) Microarray analysis of transposon insertion mutations in Bacillus anthracis: global identification of genes required for sporulation and germination. J Bacteriol 189:3296–3301

    PubMed  CAS  Google Scholar 

  • Dietrich WF, Damron DM, Isberg RR, Lander ES, Swanson MS (1995) Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26:443–450

    PubMed  CAS  Google Scholar 

  • Diez E, Lee SH, Gauthier S, Yaraghi Z, Tremblay M, Vidal S, Gros P (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60

    PubMed  CAS  Google Scholar 

  • Dunn PL, North RJ (1991) Early gamma interferon production by natural killer cells is important in defense against murine listeriosis. Infect Immun 59:2892–2900

    PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    PubMed  CAS  Google Scholar 

  • Fleming MD, Trenor CC 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383–386

    PubMed  CAS  Google Scholar 

  • Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102:1884–1892

    PubMed  CAS  Google Scholar 

  • Fortier A, Min-Oo G, Forbes J, Lam-Yuk-Tseung S, Gros P (2005) Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol 77:868–877

    PubMed  CAS  Google Scholar 

  • Fortier A, de Chastellier C, Balor S, Gros P (2007) Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9:910–923

    PubMed  CAS  Google Scholar 

  • Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582

    PubMed  CAS  Google Scholar 

  • Francois P, Garzoni C, Bento M, Schrenzel J (2007) Comparison of amplification methods for transcriptomic analyses of low abundance prokaryotic RNA sources. J Microbiol Methods 68:385–391

    PubMed  CAS  Google Scholar 

  • Friedlander AM, Bhatnagar R, Leppla SH, Johnson L, Singh Y (1993) Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect Immun 61:245–252

    PubMed  CAS  Google Scholar 

  • Garifulin O, Qi Z, Shen H, Patnala S, Green MR, Boyartchuk V (2007) Irf3 polymorphism alters induction of IFNbeta; in response to L. monocytogenes infection. PLoS Genetics (in press)

  • Graham MR, Virtaneva K, Porcella SF, Gardner DJ, Long RD, Welty DM, Barry WT, Johnson CA, Parkins LD, Wright FA, Musser JM (2006) Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. Am J Pathol 169:927–942

    PubMed  CAS  Google Scholar 

  • Gros P, Skamene E, Forget A (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127:2417–2421

    PubMed  CAS  Google Scholar 

  • Growney JD, Dietrich WF (2000) High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res 10:1158–1171

    PubMed  CAS  Google Scholar 

  • Growney JD, Scharf JM, Kunkel LM, Dietrich WF (2000) Evolutionary divergence of the mouse and human Lgn1/SMA repeat structures. Genomics 64:62–81

    PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    PubMed  CAS  Google Scholar 

  • Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S (1998) Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188:351–364

    PubMed  CAS  Google Scholar 

  • Harvill ET, Cotter PA, Yuk MH, Miller JF (1999) Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect Immun 67:1493–1500

    PubMed  CAS  Google Scholar 

  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    PubMed  CAS  Google Scholar 

  • Hisert KB, Kirksey MA, Gomez JE, Sousa AO, Cox JS, Jacobs WR Jr, Nathan CF, McKinney JD (2004) Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 72:5315–5321

    PubMed  CAS  Google Scholar 

  • Hisert KB, MacCoss M, Shiloh MU, Darwin KH, Singh S, Jones RA, Ehrt S, Zhang Z, Gaffney BL, Gandotra S, Holden DW, Murray D, Nathan C (2005) A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 56:1234–1245

    PubMed  CAS  Google Scholar 

  • Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci USA 82:6619–6621

    PubMed  CAS  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    PubMed  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    PubMed  CAS  Google Scholar 

  • Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103:14542–14547

    PubMed  CAS  Google Scholar 

  • Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259:1742–1745

    PubMed  CAS  Google Scholar 

  • Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P (2000) Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248

    PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Joshi SM, Pandey AK, Capite N, Fortune SM, Rubin EJ, Sassetti CM (2006) Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci USA 103:11760–11765

    PubMed  CAS  Google Scholar 

  • Kaye PM, Blackwell JM (1989) Lsh, antigen presentation and the development of CMI. Res Immunol 140:810–815 discussion 815–22

    PubMed  CAS  Google Scholar 

  • Klarsfeld AD, Goossens PL, Cossart P (1994) Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol Microbiol 13:585–597

    PubMed  CAS  Google Scholar 

  • Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:8560–8565

    PubMed  CAS  Google Scholar 

  • Lamkanfi M, Amer A, Kanneganti TD, Munoz-Planillo R, Chen G, Vandenabeele P, Fortier A, Gros P, Nunez G (2007) The Nod-like receptor family member Naip5/birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lang T, Prina E, Sibthorpe D, Blackwell JM (1997) Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation. Infect Immun 65:380–386

    PubMed  CAS  Google Scholar 

  • Lawson JN, Lyons CR, Johnston SA (2006) Expression profiling of Yersinia pestis during mouse pulmonary infection. DNA Cell Biol 25:608–616

    PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    PubMed  CAS  Google Scholar 

  • Logsdon LK, Mecsas J (2003) Requirement of the Yersinia pseudotuberculosis effectors YopH and YopE in colonization and persistence in intestinal and lymph tissues. Infect Immun 71:4595–4607

    PubMed  CAS  Google Scholar 

  • Logsdon LK, Mecsas J (2006) The proinflammatory response induced by wild-type Yersinia pseudotuberculosis infection inhibits survival of yop mutants in the gastrointestinal tract and Peyer’s patches. Infect Immun 74:1516–1527

    PubMed  CAS  Google Scholar 

  • Lurie MB, Zappasodi P, Dannenberg AM Jr, Weiss GH (1952) On the mechanism of genetic resistance to tuberculosis and its mode of inheritance. Am J Hum Genet 4:302–314

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Pierce-Chase CH, Dubos R (1965) A genetic study of susceptibility to experimental tuberculosis in mice infected with mammalian tubercle bacilli. J Exp Med 121:1051–1070

    PubMed  CAS  Google Scholar 

  • MacMicking JD (2005) Immune control of phagosomal bacteria by p47 GTPases. Curr Opin Microbiol 8:74–82

    PubMed  CAS  Google Scholar 

  • Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688

    PubMed  CAS  Google Scholar 

  • Mahan MJ, Tobias JW, Slauch JM, Hanna PC, Collier RJ, Mekalanos JJ (1995) Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci USA 92:669–673

    PubMed  CAS  Google Scholar 

  • Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E, Fuks A, Bumstead N, Morgan K, Gros P (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23:51–61

    PubMed  CAS  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  • Mecsas J (2002) Use of signature-tagged mutagenesis in pathogenesis studies. Curr Opin Microbiol 5:33–37

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    PubMed  CAS  Google Scholar 

  • Merrell DS, Camilli A (2002) Information overload: assigning genetic functionality in the age of genomics and large-scale screening. Trends Microbiol 10:571–574

    PubMed  CAS  Google Scholar 

  • Merrell DS, Hava DL, Camilli A (2002) Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491

    PubMed  CAS  Google Scholar 

  • Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    PubMed  CAS  Google Scholar 

  • Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575

    PubMed  CAS  Google Scholar 

  • Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ, Lu L, Williams RW, Byrne GI (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol 179:1814–1824

    PubMed  CAS  Google Scholar 

  • Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104

    PubMed  CAS  Google Scholar 

  • Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, Fukase K, Kusumoto S, Sweet C, Miyake K, Akira S, Cotter RJ, Goguen JDm, Lien E (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7:1066–1073

    PubMed  CAS  Google Scholar 

  • Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52:1291–1302

    PubMed  CAS  Google Scholar 

  • North RJ, LaCourse R, Ryan L, Gros P (1999) Consequence of Nramp1 deletion to Mycobacterium tuberculosis infection in mice. Infect Immun 67:5811–5814

    PubMed  CAS  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124:20–24

    PubMed  CAS  Google Scholar 

  • O’Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, Perry AK, Nguyen BO, Lane TF, Taniguchi T, Miller JF, Cheng G (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445

    PubMed  CAS  Google Scholar 

  • Osorio CG, Crawford JA, Michalski J, Martinez-Wilson H, Kaper JB, Camilli A (2005) Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun 73:972–980

    PubMed  CAS  Google Scholar 

  • Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    PubMed  CAS  Google Scholar 

  • Papathanasiou P, Goodnow CC (2005) Connecting mammalian genome with phenome by ENU mouse mutagenesis: gene combinations specifying the immune system. Annu Rev Genet 39:241–262

    PubMed  CAS  Google Scholar 

  • Plant J, Glynn AA (1974) Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature 248:345–347

    PubMed  CAS  Google Scholar 

  • Plant J, Glynn AA (1976) Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis 133:72–78

    PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    PubMed  CAS  Google Scholar 

  • Portnoy DA (2005) Manipulation of innate immunity by bacterial pathogens. Curr Opin Immunol 17:25–28

    PubMed  CAS  Google Scholar 

  • Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18

    PubMed  Google Scholar 

  • Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102:8327–8332

    PubMed  CAS  Google Scholar 

  • Revel AT, Talaat AM, Norgard MV (2002) DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 99:1562–1567

    PubMed  CAS  Google Scholar 

  • Rietsch A, Wolfgang MC, Mekalanos JJ (2004) Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa. Infect Immun 72:1383–1390

    PubMed  CAS  Google Scholar 

  • Roberts JE, Watters JW, Ballard JD, Dietrich WF (1998) Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol Microbiol 29:581–591

    PubMed  CAS  Google Scholar 

  • Robson HG, Vas SI (1972) Resistance of inbred mice to Salmonella typhimurium. J Infect Dis 126:378–386

    PubMed  CAS  Google Scholar 

  • Salama NR, Manoil C (2006) Seeking completeness in bacterial mutant hunts. Curr Opin Microbiol 9:307–311

    PubMed  CAS  Google Scholar 

  • Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440:1064–1068

    PubMed  CAS  Google Scholar 

  • Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994

    PubMed  CAS  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717

    PubMed  CAS  Google Scholar 

  • Shimono N, Morici L, Casali N, Cantrell S, Sidders B, Ehrt S, Riley LW (2003) Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci USA 100:15918–15923

    PubMed  CAS  Google Scholar 

  • Skamene E, Gros P, Forget A, Kongshavn PA, St Charles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297:506–509

    PubMed  CAS  Google Scholar 

  • Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381

    PubMed  CAS  Google Scholar 

  • Stober CB, Brode S, White JK, Popoff JF, Blackwell JM (2007) Slc11a1 (formerly Nramp1) is expressed in dendritic cells and influences MHC class II expression and antigen presenting cell function. Infect Immun (in press)

  • Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93:5105–5110

    PubMed  CAS  Google Scholar 

  • Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164

    PubMed  CAS  Google Scholar 

  • Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607

    PubMed  CAS  Google Scholar 

  • Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bennett S, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Kramnik I, Hill AV (2006) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci USA 103:10364–10368

    PubMed  CAS  Google Scholar 

  • Tripp CS, Gately MK, Hakimi J, Ling P, Unanue ER (1994) Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma. J Immunol 152:1883–1887

    PubMed  CAS  Google Scholar 

  • Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011

    PubMed  CAS  Google Scholar 

  • van Diepen A, van der Straaten T, Holland SM, Janssen R, van Dissel JT (2002) A superoxide-hypersusceptible Salmonella enterica serovar Typhimurium mutant is attenuated but regains virulence in p47(phox−/−) mice. Infect Immun 70:2614–2621

    PubMed  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–808

    PubMed  CAS  Google Scholar 

  • Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658

    PubMed  CAS  Google Scholar 

  • Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    PubMed  CAS  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    PubMed  CAS  Google Scholar 

  • Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666

    PubMed  CAS  Google Scholar 

  • von Jeney N, Gunther E, Jann K (1977) Mitogenic stimulation of murine spleen cells: relation to susceptibility to Salmonella infection. Infect Immun 15:26–33

    Google Scholar 

  • Wade CM, Daly MJ (2005) Genetic variation in laboratory mice. Nat Genet 37:1175–1180

    PubMed  CAS  Google Scholar 

  • Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR (2001) Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 194:1081–1096

    PubMed  CAS  Google Scholar 

  • Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118:2088–2093

    PubMed  CAS  Google Scholar 

  • Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120:422–424

    PubMed  CAS  Google Scholar 

  • Watters JW, Dewar K, Lehoczky J, Boyartchuk V, Dietrich WF (2001) Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr Biol 11:1503–1511

    PubMed  CAS  Google Scholar 

  • Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci USA 104:6037–6042

    PubMed  CAS  Google Scholar 

  • Wright EK, Goodart SA, Growney JD, Hadinoto V, Endrizzi MG, Long EM, Sadigh K, Abney AL, Bernstein-Hanley I, Dietrich WF (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13:27–36

    PubMed  CAS  Google Scholar 

  • Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100:1286–91

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56:370–375

    PubMed  CAS  Google Scholar 

  • Yan BS, Kirby A, Shebzukhov YV, Daly MJ, Kramnik I (2006) Genetic architecture of tuberculosis resistance in a mouse model of infection. Genes Immun 7:201–210

    PubMed  CAS  Google Scholar 

  • Yoshida S, Goto Y, Mizuguchi Y, Nomoto K, Skamene E (1991) Genetic control of natural resistance in mouse macrophages regulating intracellular Legionella pneumophila multiplication in vitro. Infect Immun 59:428–432

    PubMed  CAS  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    PubMed  CAS  Google Scholar 

  • Zhang S, Chen Y, Potvin E, Sanschagrin F, Levesque RC, McCormack FX, Lau GW (2005) Comparative signature-tagged mutagenesis identifies Pseudomonas factors conferring resistance to the pulmonary collectin SP-A. PLoS Pathog 1:259–268

    PubMed  CAS  Google Scholar 

  • Zhang S, McCormack FX, Levesque RC, O’Toole GA, Lau GW (2007) The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein a. PLoS ONE 2:e564

    PubMed  Google Scholar 

  • Zwilling BS, Vespa L, Massie M (1987) Regulation of I-A expression by murine peritoneal macrophages: differences linked to the Bcg gene. J Immunol 138:1372–1376

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge stimulating discussions with Greg Barton, Zeke Bernstein-Hanley, Victor Boyartchuk, Sky Brubaker, Jörn Coers, Bill Dietrich, Joan Mecsas, Jeff Miller, Jeff Murry, Carl Nathan, Dan Portnoy, and Jun Zhu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell E. Vance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, J., Vance, R.E. Genetics-squared: combining host and pathogen genetics in the analysis of innate immunity and bacterial virulence. Immunogenetics 59, 761–778 (2007). https://doi.org/10.1007/s00251-007-0248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0248-0

Keywords

Navigation