Skip to main content

Advertisement

Log in

A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

FOXP3/Scurfin, a member of forkhead/winged-helix proteins, is involved in the regulation of T-cell activation, and essential for normal immune homeostasis. The FOXP3/Scurfin gene is located on chromosome Xp11.23, which includes one of the type 1 diabetes susceptible loci. Therefore, we investigated whether the human FOXP3/Scurfin gene might be a new candidate gene for type 1 diabetes. We first screened the human FOXP3/Scurfin gene for microsatellite and single nucleotide polymorphisms. Next, we performed an association study between the FOXP3/Scurfin gene and type 1 diabetes. Then, the evaluation of promoter/enhancer activity of the intron with (GT)n polymorphism was performed by dual luciferase reporter assay. We demonstrated two regions contained microsatellite polymorphisms; one was (GT)n, located on intron zero and the other (TC)n on intron 5, which were under linkage-disequilibrium. The (GT)15 allele showed a significantly higher frequency in patients with type 1 diabetes than in controls (43.1% vs 32.6%, P=0.0027). The genotype frequencies of (GT)15/(GT)15 in female patients and of (GT)15 in male patients tended to be higher than those in female (P=0.064) and male (P=0.061) controls, respectively. A significant difference in the enhancer activity between (GT)15 and (GT)16 dinucleotide repeats was detected. In conclusion, the FOXP3/Scurfin gene appears to confer a significant susceptibility to type 1 diabetes in the Japanese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Abraham RS, Wen L, Marietta EV, David CS (2001) Type 1 diabetes-predisposing MHC alleles influence the selection of glutamic acid decarboxylase (GAD) 65-specific T cells in a transgenic model. J Immunol 166:1370–1379

    Article  CAS  Google Scholar 

  • Ahmed S, Ihara K, Bassuny WM, Kuromaru R, Kohno H, Miyako K, Matsuura N, Iwata I, Nagafuchi S, Hara T (2002) Association study between CD30 and CD30 ligand genes and type 1 diabetes in the Japanese population. Genes Immunol 3:96–101

    Article  CAS  Google Scholar 

  • Atkinson MA, Maclaren NK (1994) The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med 331:1428–1436

    Article  CAS  Google Scholar 

  • Bassuny WM, Ihara K, Matsuura N, Ahmed S, Kohno H, Kuromaru R, Miyako K, Hara T (2002) Association study of the NRAMP1 gene promoter polymorphism and early-onset type 1 diabetes. Immunogenetics 54:282–285

    Article  CAS  Google Scholar 

  • Bennett CL, Ochs HD (2001) IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 13:533–538

    Article  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  CAS  Google Scholar 

  • Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:R75–81

    Article  CAS  Google Scholar 

  • Clark LB, Appleby MW, Brunkow ME, Wilkinson JE, Ziegler SF, Ramsdell F (1999) Cellular and molecular characterization of the scurfy mouse mutant. J Immunol 162:2546–2554

    CAS  PubMed  Google Scholar 

  • Cookson WO, Moffatt MF (2000) Genetics of asthma and allergic disease. Hum Mol Genet 9:2359–2364

    Article  CAS  Google Scholar 

  • Cucca F, Goy JV, Kawaguchi Y, Esposito L, Merriman ME, Wilson AJ, Cordell HJ, Bain SC, Todd JA (1998) A male-female bias in type 1 diabetes and linkage to chromosome Xp in MHC HLA-DR3-positive patients. Nat Genet 19:301–302

    Article  CAS  Google Scholar 

  • Field LL (2002) Genetic linkage and association studies of type I diabetes: challenges and rewards. Diabetologia 45:21–35

    Article  CAS  Google Scholar 

  • Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44:3–15

    Article  CAS  Google Scholar 

  • Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 26:2989–2998

    Article  CAS  Google Scholar 

  • Green A, Patterson CC; The EURODIAB TIGER Study Group. Europe and Diabetes (2001) Trends in the incidence of childhood-onset diabetes in Europe 1989–1998. Diabetologia 44:B3–B8

    Article  Google Scholar 

  • Hall IP (1998) Genetic factors in asthma severity. Clin Exp Allergy 28:16–20

    Article  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T-cell development by the transcription factor FOXP3. Science 299:1057–1061

    Article  CAS  Google Scholar 

  • Ihara K, Ahmed S, Nakao F, Kinukawa N, Kuromaru R, Matsuura N, Iwata I, Nagafuchi S, Kohno H, Miyako K, Hara T (2001) Association studies of CTLA-4, CD28, and ICOS gene polymorphisms with type 1 diabetes in the Japanese population. Immunogenetics 53:447–454

    Article  CAS  Google Scholar 

  • Iwakoshi NN, Greiner DL, Rossini AA, Mordes JP (1999) Diabetes prone BB rats are severely deficient in natural killer T cells. Autoimmunity 31:1–14

    Article  CAS  Google Scholar 

  • Khattri R, Kasprowicz D, Cox T, Mortrud M, Appleby MW, Brunkow ME, Ziegler SF, Ramsdell F (2001) The amount of scurfin protein determines peripheral T-cell number and responsiveness. J Immunol 167:6312–6320

    Article  CAS  Google Scholar 

  • Kida K, Mimura G, Ito T, Murakami K, Ashkenazi I, Laron Z, The Data Committee for Childhood Diabetes of the Japan Diabetes Society (JDS) (2000) Incidence of type 1 diabetes mellitus in children aged 0–14 in Japan, 1986–1990, including an analysis for seasonality of onset and month of birth: JDS study. Diabet Med 17:59–63

    Article  CAS  Google Scholar 

  • Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  CAS  Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson V, Nakken B, Bolstad AI, Alarcón-Riquelme ME (2001) Cytokine polymorphisms in systemic lupus erythematosus and Sjögren's syndrome. Scand J Immunol 54:55–61

    Article  CAS  Google Scholar 

  • Mann MJ, Dzau VJ (2000) Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest 106:1071–1075

    Article  CAS  Google Scholar 

  • Nerup J, Pociot F; European Consortium for IDDM Studies (2001) A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet 69:1301–1313

    Article  CAS  Google Scholar 

  • Patel DD (2001) Escape from tolerance in the human X-linked autoimmunity-allergic disregulation syndrome and the Scurfy mouse. J Clin Invest 107:155–157

    Article  CAS  Google Scholar 

  • Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV, Godfrey DI, Baxter AG (2001) Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 13:887–896

    Article  CAS  Google Scholar 

  • Powell BR, Buist NR, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100:731–737

    Article  CAS  Google Scholar 

  • Ridgway WM, Fasso M, Fathman CG (1999) A new look at MHC and autoimmune disease. Science 284:749–751

    Article  CAS  Google Scholar 

  • Roncarolo MG, Levings MK (2000) The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 12:676–683

    Article  CAS  Google Scholar 

  • Rosmalen JG, van Ewijk W, Leenen PJ (2002) T-cell education in autoimmune diabetes: teachers and students. Trends Immunol 23:40–46

    Article  CAS  Google Scholar 

  • Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  CAS  Google Scholar 

  • Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    Article  CAS  Google Scholar 

  • Schmidt D, Amrani A, Verdaguer J, Bou S, Santamaria P (1999) Autoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules. J Immunol 162:4627–4636

    CAS  PubMed  Google Scholar 

  • Schubert LA, Jeffrey E, Zhang Y, Ramsdell F, Zeigler SF (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T-cell activation. J Biol Chem 276:37672–37679

    Article  CAS  Google Scholar 

  • The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Article  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy, and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  CAS  Google Scholar 

  • Wildin RS, Smyk-Pearson S, Filipovich AH (2002) Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39:537–545

    Article  CAS  Google Scholar 

  • Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M, Porcelli S, Schatz DA, Atkinson MA, Balk SP, Strominger JL, Hafler DA (1998) Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 391:177–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. M. Saito and F. Nakatani for their technical assistance and pertinent advice. This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and a grant from Japan Study Group for Pediatric and Adolescent Diabetes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa M. Bassuny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassuny, W.M., Ihara, K., Sasaki, Y. et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics 55, 149–156 (2003). https://doi.org/10.1007/s00251-003-0559-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-003-0559-8

Keywords

Navigation