Skip to main content
Log in

NMR studies on the monomer–tetramer transition of melittin in an aqueous solution at high and low temperatures

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Melittin, a peptide of 26 amino acid residues, has been used as a model peptide for protein folding and unfolding, and extensive research has been done into its structure and conformational stability. Circular dichroism (CD) studies have demonstrated that melittin in an aqueous solution undergoes a transition from a helical tetramer to a random coil monomer not only by heating but also by cooling from room temperature (i.e., heat- and cold-denaturation, respectively). The heat-denaturation has been also examined by nuclear magnetic resonance (NMR) experiments, however, no NMR data have been presented on the cold-denaturation. In this paper, using proton (1H) NMR spectroscopy, we show that melittin undergoes conformational transitions from the monomer to the tetramer to the monomer by elevating temperature from 2 to 70 °C. Only melittin including a trans proline peptide bond participates in the transitions, whereas melittin including a cis proline one does not. The tetramer has maximum conformation stability at around 20 °C, and cooperativity of the heat-denaturation is extremely low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bazzo R, Tappin MJ, Pastore A, Harvey TS, Carver JA, Campbell ID (1988) The structure of melittin: a 1H-NMR study in methanol. Eur J Biochem 173:139–146

    Article  PubMed  CAS  Google Scholar 

  • Bello J, Bello HR, Granados E (1982) Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry 21:461–465

    Article  PubMed  CAS  Google Scholar 

  • Brown LR, Lauterwein J, Wüthrich K (1980) High–resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta 622:231–244

    Article  PubMed  CAS  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE (1990) The action of melittin on membranes. Biochim Biophys Acta 1031:143–230

    Article  PubMed  CAS  Google Scholar 

  • Dias CL, Ala-Nissila T, Karttunen M, Vattulainen I, Grant M (2008) Microscopic mechanism for cold denaturation. Phys Rev Lett 21:118101

    Article  Google Scholar 

  • Faucon JF, Dufourco J, Lussan C (1979) The self-association of melittin and its binding to lipids. FEBS Lett 102:187–190

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Hagihara Y (1992) Mechanism of the conformational transition of melittin. Biochemistry 31:732–738

    Article  PubMed  CAS  Google Scholar 

  • Hagihara Y, Kataoka M, Aimoto S, Goto Y (1992) Charge repulsion in the conformational stability of melittin. Biochemistry 31:11908–11914

    Article  PubMed  CAS  Google Scholar 

  • Hagihara Y, OObatake M, Goto Y (1994) Thermal unfolding of tetramer melittin: comparison with the molten golobule state of cytochrome c. Protein Sci 3:1418–1429

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Shimada I, Kawaguchi K, Hirano M, Terasawa I, Ikura T, Go N (1989) Structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distant geometry calculations. Biochemistry 28:5985–5991

    Article  CAS  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1998) The structure of the melittin at different temperatures: an NOE-based calculation with chemical shift refinement. Eur J Biochem 257:479–487

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita M (2009) Importance of translational entropy of water in biological self-assembly processes like protein folding. Int J Mol Sci 10:1064–1080

    Article  PubMed  CAS  Google Scholar 

  • Lauterwein J, Brown LR, Wüthrich K (1980) High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta 622:219–230

    Article  PubMed  CAS  Google Scholar 

  • Marques MI, Borreguero JM, Stanley HE, Dokholyan NV (2003) Possible mechanism for cold denaturation of proteins at high temperature. Phys Rev Lett 91:138103

    Article  PubMed  Google Scholar 

  • Miura Y (2011) Helix conformation of a small peptide melittin in a methanol-water mixed solvent studied by NMR. Protein Pept Lett 18:318–326

    Article  PubMed  CAS  Google Scholar 

  • Murphy KP, Privalov PL, Gill SJ (1990) Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247:559–561

    Article  PubMed  CAS  Google Scholar 

  • Othon CM, Kwon O, Lin MM, Zewail AH (2009) Solvation in protein (un)folding of melittin tetramer-monomer transition. PNAS 106:12593–12598

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–306

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1992) Physical basis of the stability of the folded conformations of proteins. In: Creighton TE (ed) Protein folding. Freeman WE and Company, New York, pp 83–126

    Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234

    Article  PubMed  CAS  Google Scholar 

  • Qiu W, Zhang L, Kao Y, Lu W, Li T, Kim J, Sollenberger GM, Wang L, Zhong D (2005) Ultra hydration dynamics in melittin folding and aggregation: helix formation and tetramer self-assembly. J Phys Chem B 109:16901–16910

    Article  PubMed  CAS  Google Scholar 

  • Quay SC, Condie CC (1983) Conformational studies of aqueous melittin: thermodynamic parameters of the monomer–tetramer self-association reaction. Biochemistry 22:695–700

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam K, Bello J, Aimoto S (1991) Conformation changes in melittin upon complexation with an anionic melittin analog. FEBS Lett 295:200–202

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam K, Aimoto S, Bello J (1992) Conformational studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature—models for protein folding and halophilic proteins. Biopolymers 32:981–992

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Pappert G, Boss K (1985) Does dimeric melittin occur in aqueous solutions? Biophys J 48:327–329

    Article  PubMed  CAS  Google Scholar 

  • Soda K (1993) Structural and thermodynamic aspects of the hydrophobic effect. Adv Biophys 29:1–54

    Article  PubMed  CAS  Google Scholar 

  • ten Wolde PR, Chandler D (2002) Drying-induced hydrophobic polymer collapse. Proc Natl Acad Sci USA 99:6539–6543

    Article  PubMed  CAS  Google Scholar 

  • Wilcox W, Eisenberg D (1992) Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. Protein Sci 1:641–653

    Article  PubMed  CAS  Google Scholar 

  • Yoshidome T, Kinoshita M (2009) Hydrophobicity at low temperatures and cold denaturation of a protein. Phys Rev E 79:030905(R)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, Y. NMR studies on the monomer–tetramer transition of melittin in an aqueous solution at high and low temperatures. Eur Biophys J 41, 629–636 (2012). https://doi.org/10.1007/s00249-012-0831-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0831-7

Keywords

Navigation