Skip to main content
Log in

The dynamics of melittin-induced membrane permeability

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The transport of co-encapsulated solutes through the melittin-induced pores in the membrane of giant phospholipid vesicles was studied, and the characteristics of the pore formation process were modeled. Molecules of two different sizes (dextran and the smaller, fluorescent marker Alexa Fluor) were encapsulated inside the vesicles. The chosen individual vesicles were then transferred by micromanipulation from the stock suspension to the environment with the melittin (MLT). The vesicles were observed optically with a phase-contrast microscope and by monitoring the fluorescence signal. Such an experimental setup enabled an analysis of a single vesicle’s response to the MLT on the basis of simultaneous, separate measurements of the outflow of both types of encapsulated molecules through the MLT-induced pores in the membrane. The mechanisms of the MLT’s action were suggested in a model for MLT pore formation, with oligomeric pores continuously assembling and dissociating in the membrane. Based on the model, the results of the experiments were explained as a consequence of the membrane’s permeability dynamics, with a continuously changing distribution of pores in the membrane with regard to their size and number. The relatively stable “average MLT pore” characteristics can be deduced from the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837

    Article  PubMed  CAS  Google Scholar 

  • Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external AC fields. Prog Colloid Polym Sci 89:127–131

    Article  CAS  Google Scholar 

  • Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29:52–58

    Article  PubMed  CAS  Google Scholar 

  • Bohrer MP, Deen WM, Robertson CR, Troy JL, Brenner BM (1979) Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol 74:583–593

    Article  PubMed  CAS  Google Scholar 

  • Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84:3751–3758

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161

    PubMed  CAS  Google Scholar 

  • dos Santos Cabrera MP, de Souza BM, Fontana R, Konno K, Palma MS, de Azevedo WF Jr, Ruggiero Neto J (2004) Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venom. J Peptide Res 64:95–103

    Article  Google Scholar 

  • Fantner GE, Barbero RJ, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5:280–285

    Article  PubMed  CAS  Google Scholar 

  • Fuertes G, García-Sáez AJ, Esteban-Martín S, Giménez D, Sánchez-Muñoz OL, Schwille P, Salgado J (2010) Pores formed by Baxα5 relax to a smaller size and keep at equilibrium. Biophys J 99:2917–2925

    Article  PubMed  CAS  Google Scholar 

  • Hamm EC, Simson DA, Merkel R, Smetacek V (1999) Colonies of Phaeocystis globosa are protected by a thin but tough skin. Mar Ecol Prog Ser 187:101–111

    Article  Google Scholar 

  • Heyman NS, Burt JM (2008) Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J 94:840–854

    Article  PubMed  CAS  Google Scholar 

  • Hristova K, Dempsey CE, White SH (2001) Structure, location and lipid perturbations of melittin at the membrane interface. Biophys J 80:801–811

    Article  PubMed  CAS  Google Scholar 

  • Huang HW, Chen FY, Lee MT (2004) Molecular mechanism of peptide—induced pores in membranes. Phys Rev Lett 92:198304-1-4

    Google Scholar 

  • Karatekin E, Sandre O, Guitouni H, Borghi N, Puech PH, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84:1734–1749

    Article  PubMed  CAS  Google Scholar 

  • Katsu T, Ninomiya C, Kuroko M, Kobayashi H, Hirota T, Fujita Y (1988) Action mechanism of amphipathic peptides on erythrocyte membrane. Biochim Biophys Acta 939:57–63

    Article  PubMed  CAS  Google Scholar 

  • Kuchinka E, Seelig J (1989) Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry 28:4216–4221

    Article  PubMed  CAS  Google Scholar 

  • Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72:1762–1766

    Article  PubMed  CAS  Google Scholar 

  • Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599

    Article  PubMed  CAS  Google Scholar 

  • Lee MT, Hung WC, Chen FY, Huang HW (2008) Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc Natl Acad Sci USA 105:5087–5092

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Baumgaertner A (2000) Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J 78:1714–1724

    Article  PubMed  CAS  Google Scholar 

  • Longo ML, Waring AJ, Gordon LM, Hammer DA (1998) Area expansion and permeation of phospholipid membrane bilayer by influenza fusion peptides and melittin. Langmuir 14:2385–2395

    Article  CAS  Google Scholar 

  • Macháň R, Miszta A, Hermens W, Hof M (2010) Real-time monitoring of melittin-induced pore and tubule formation from supported lipid bilayers and its physiological relevance. Chem Phys Lipids 163:200–206

    Article  PubMed  Google Scholar 

  • Mally M, Majhenc J, Svetina S, Žekš B (2002) Mechanisms of equinatoxin II—induced transport through the membrane of a giant phospholipids vesicle. Biophys J 83:944–953

    Article  PubMed  CAS  Google Scholar 

  • Mally M, Majhenc J, Svetina S, Žekš B (2007) The response of giant phospholipid vesicles to pore-forming peptide melittin. Biochim Biophys Acta 1768:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Manna M, Mukhopadhyay C (2009) Cause and effect of melittin-induced pore formation: a computational approach. Langmuir 25:12235–12242

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73:831–838

    Article  PubMed  CAS  Google Scholar 

  • Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta 1798:1494–1502

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H (2000) Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys J 78:2405–2417

    Article  PubMed  CAS  Google Scholar 

  • Pluta M (1989) Advanced light microscopy, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223

    Article  PubMed  CAS  Google Scholar 

  • Rasband WS (1997–2012) ImageJ. US NIH, Bethesda. http://imagej.nih.gov/ij/

  • Rex S, Schwarz G (1998) Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry 37:2336–2345

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G (1996) Electrical interactions of membrane active peptides at lipid/waterinterfaces. Biophys Chem 58:67–73

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Zong RT, Popescu T (1992) Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta 1110:97–104

    Article  PubMed  CAS  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2310

    Article  PubMed  CAS  Google Scholar 

  • Takei J, Remenyi A, Dempsey CE (1999) Generalised bilayer perturbation from peptide helix dimerisation at membrane surfaces: vesicle lysis induced by disulphide-dimerised melittin analogues. FEBS Lett 442:11–14

    Article  PubMed  CAS  Google Scholar 

  • Tamba Y, Ariyama H, Levadny V, Yamazaki M (2010) Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B 114:12018–12026

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger TC, Eisenberg D (1982) The structure of melittin. J Biol Chem 257:6016–6022

    PubMed  CAS  Google Scholar 

  • Torrens F, Castellano G, Campos A, Abad C (2007) Negatively cooperative binding of melittin to neutral phospholipid vesicles. J Mol Struct 834:216–228

    Article  Google Scholar 

  • Venturoli D, Rippe B (2005) Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol 288:605–613

    Article  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed  Google Scholar 

  • Zemel A, Fattal DR, Ben-Shaul A (2003) Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 84:2242–2255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency through grant P1-0055. The experiments comply with the laws of the Republic of Slovenia.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojca Mally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokot, G., Mally, M. & Svetina, S. The dynamics of melittin-induced membrane permeability. Eur Biophys J 41, 461–474 (2012). https://doi.org/10.1007/s00249-012-0800-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0800-1

Keywords

Navigation