Skip to main content
Log in

Phases and domains in sphingomyelin–cholesterol membranes: structure and properties using EPR spin-labeling methods

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

EPR spin-labeling methods were used to investigate the order and fluidity of alkyl chains, the hydrophobicity of the membrane interior, and the order and motion of cholesterol molecules in coexisting phases and domains, or in a single phase of fluid-phase cholesterol/egg-sphingomyelin (Chol/ESM) membranes with a Chol/ESM mixing ratio from 0 to 3. A complete set of profiles for these properties was obtained for the liquid-disordered (l d) phase without cholesterol, for the liquid-ordered (l o) phase for the entire region of cholesterol solubility in this phase (from 33 to 66 mol%), and for the l o-phase domain that coexists with the cholesterol bilayer domain (CBD). Alkyl chains in the l o phase are more ordered than in the l d pure ESM membrane. However, fluidity in the membrane center is greater. Also, the profile of hydrophobicity changed from a bell to a rectangular shape. These differences are enhanced when the cholesterol content of the l o phase is increased from 33 to 66 mol%, with clear brake-points between the C9 and C10 positions (approximately where the steroid-ring structure of cholesterol reaches into the membrane). The organization and motion of cholesterol molecules in the CBD are similar to those in the l o-phase domain that coexists with the CBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A reviewer pointed out that our conclusion is in contrast with the commonly accepted statement that membrane saturation reduces membrane fluidity. This difference is clearly seen for lens lipid membranes, where the phospholipid composition changes drastically with age and with a preferential increase in saturated phospholipids, for example sphingomyelin and dihydrosphingomyelin, which should increase the lipid hydrocarbon chain order. Huang et al. (2005) showed that the structural order determined by the static measure of the trans/gauche rotamer ratio in the hydrocarbon chains increases linearly with the sphingolipid content of the lens lipid membrane (see also the review by Borchman and Yappert 2010). Thus, the properties of lens lipid membranes, including membrane order (fluidity), should change with the age of the donor, between species, and between regions of the lens. However, molecular order, measured with lipid spin labels in saturated membranes, strongly increases with an increase in cholesterol concentration up to ~30 mol%. Further increase of cholesterol concentration, up to 50 mol%, causes a decrease in the molecular order (Kusumi et al. 1986; Sankaram and Thompson 1990; Wisniewska and Subczynski 2008). In unsaturated membranes, the molecular order increases only weakly with an increase in cholesterol concentration up to 50 mol% (Kusumi et al. 1986). Thus, at saturation, both orders are very close. Similar effects were reported by Borchman et al. (1996) using the structural order parameter as a measure of membrane fluidity. The structural order parameter measured in membranes made from bovine nuclear phospholipids (more saturated membranes) increased with cholesterol concentration up to 20–30 mol%, which was then followed by a rapid decrease in the structural order parameter up to ~70 mol% cholesterol. In cortical phospholipid membranes (less saturated membranes), an increase in the structural order parameter induced by cholesterol was significantly weaker. A maximum was reached at ~40 mol% cholesterol. Further increase in cholesterol content also induced a decrease in the structural order parameter. As a result, at cholesterol saturation, the structural order parameters in nuclear and cortical membranes were very close. We should again note that the phospholipid compositions of these two membranes differ substantially. Borchman et al. concluded that the physiological role of cholesterol is to increase the structural order of cortical membrane lipids and reduce the order of nuclear lipids so that the two membranes have a similar order, which is in agreement with our main conclusion.

References

  • Almeida PFF, Vaz WLC, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747

    Article  PubMed  CAS  Google Scholar 

  • Ashikawa I, Yin J–J, Subczynski WK, Kouyama T, Hyde JS, Kusumi A (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33:4947–4952

    Article  PubMed  CAS  Google Scholar 

  • Bartels T, Lankalapalli RS, Bittman R, Beyer K, Brown MF (2008) Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc 130:14521–14532

    Article  PubMed  CAS  Google Scholar 

  • Borchman D, Yappert MC (2010) Lipids and the ocular lens. J Lipid Res 51:2473–2488

    Article  PubMed  CAS  Google Scholar 

  • Borchman D, Cenedella RJ, Lamba OP (1996) Role of cholesterol in the structural order of lens membrane lipids. Exp Eye Res 62:191–197

    Article  PubMed  CAS  Google Scholar 

  • Borchman D, Yappert MC, Afzal M (2004) Lens lipids and maximum lifespan. Exp Eye Res 79:761–768

    Article  PubMed  CAS  Google Scholar 

  • Broekhuyse RM (1969) Phospholipids in tissues of the eye. 3. Composition and metabolism of phospholipids in human lens in relation to age and cataract formation. Biochim Biophys Acta 187:354–365

    PubMed  CAS  Google Scholar 

  • Bunge A, Muller P, Stockl M, Herrmann A, Huster D (2008) Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Biophys J 94:2680–2690

    Article  PubMed  CAS  Google Scholar 

  • Chiang YW, Zhao J, Wu J, Shimoyama Y, Freed JH, Feigenson GW (2005) New method for determining tie-lines in coexisting membrane phases using spin-label ESR. Biochim Biophys Acta 1668:99–105

    Article  PubMed  CAS  Google Scholar 

  • Chiang YW, Costa-Filho AJ, Freed JH (2007) Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study. J Phys Chem B 111:11260–11270

    Article  PubMed  CAS  Google Scholar 

  • de Almeida RF, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416

    Article  PubMed  Google Scholar 

  • Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, Blanksby SJ, Truscott RJ (2008) Human lens lipids differ markedly from those of commonly used experimental animals. Biochim Biophys Acta 1781:288–298

    PubMed  CAS  Google Scholar 

  • Deeley JM, Hankin JA, Friedrich MG, Murphy RC, Truscott RJ, Mitchell TW, Blanksby SJ (2010) Sphingolipid distribution changes with age in the human lens. J Lipid Res 51:2753–2760

    Article  PubMed  CAS  Google Scholar 

  • Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  PubMed  CAS  Google Scholar 

  • Epand RM (2003) Cholesterol in bilayers of sphingomyelin or dihydrosphingomyelin at concentrations found in ocular lens membranes. Biophys J 84:3102–3110

    Article  PubMed  CAS  Google Scholar 

  • Frazier ML, Wright JR, Pokorny A, Almeida PF (2007) Investigation of domain formation in sphingomyelin/cholesterol/POPC mixtures by fluorescence resonance energy transfer and Monte Carlo simulations. Biophys J 92:2422–2433

    Article  PubMed  CAS  Google Scholar 

  • Ge M, Field KA, Aneja R, Holowka D, Baird B, Freed JH (1999) Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J 77:925–933

    Article  PubMed  CAS  Google Scholar 

  • Griffith OH, Dehlinger PJ, Van SP (1974) Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol 15:159–192

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Grami V, Marrero Y, Tang D, Yappert MC, Rasi V, Borchman D (2005) Human lens phospholipid changes with age and cataract. Invest Ophthalmol Vis Sci 46:1682–1689

    Article  PubMed  Google Scholar 

  • Hyde JS, Subczynski WK (1989) Spin-label oximetry. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 8. Plenum Press, New York, pp 399–425

    Google Scholar 

  • Kawasaki K, Yin J–J, Subczynski WK, Hyde JS, Kusumi A (2001) Pulse EPR detection of lipid exchange between protein rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J 80:738–748

    Article  PubMed  CAS  Google Scholar 

  • Kusumi A, Subczynski WK, Hyde JS (1982a) Effects of pH on ESR spectra of stearic acid spin labels in membranes:probing the membrane surface. Fed Proc 41:1394

    Google Scholar 

  • Kusumi A, Subczynski WK, Hyde JS (1982b) Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc Natl Acad Sci USA 79:1854–1858

    Article  PubMed  CAS  Google Scholar 

  • Kusumi A, Subczynski WK, Pasenkiewicz-Gierula M, Hyde JS, Merkle H (1986) Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophys Acta 854:307–317

    Article  PubMed  CAS  Google Scholar 

  • Li LK, So L, Spector A (1985) Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res 26:600–609

    PubMed  CAS  Google Scholar 

  • Li LK, So L, Spector A (1987) Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids. Biochim Biophys Acta 917:112–120

    PubMed  CAS  Google Scholar 

  • London E (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol 12:480–486

    Article  PubMed  CAS  Google Scholar 

  • Mainali L, Feix JB, Hyde JS, Subczynski WK (2011a) Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels. J Magn Reson 212:418–425

    Article  PubMed  CAS  Google Scholar 

  • Mainali L, Raguz M, Camenisch TG, Hyde JS, Subczynski WK (2011b) Spin-label saturation-recovery EPR at W-band: applications to eye lens lipid membranes. J Magn Reson 212:86–94

    Article  PubMed  CAS  Google Scholar 

  • Mainali L, Raguz M, Subczynski WK (2011c) Phase-separation and domain-formation in cholesterol-sphingomyelin mixture: pulse EPR oxygen probing. Biophys J 101:837–846

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (1981) Electron spin resonance: spin labels. Mol Biol Biochem Biophys 31:51–142

    Article  PubMed  CAS  Google Scholar 

  • McConnell HM, Radhakrishnan A (2003) Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta 1610:159–173

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D (1968) Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta 163:240–254

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ, Wolf C (2009) Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins. Biochim Biophys Acta 1788:1126–1137

    Article  PubMed  CAS  Google Scholar 

  • Raguz M, Widomska J, Dillon J, Gaillard ER, Subczynski WK (2008) Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochim Biophys Acta 1778:1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Raguz M, Widomska J, Dillon J, Gaillard ER, Subczynski WK (2009) Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochim Biophys Acta 1788:2380–2388

    Article  PubMed  CAS  Google Scholar 

  • Raguz M, Mainali L, Widomska J, Subczynski WK (2011) The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochim Biophys Acta 1808:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Rujoi M, Jin J, Borchman D, Tang D, Yappert MC (2003) Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest Ophthalmol Vis Sci 44:1634–1642

    Article  PubMed  Google Scholar 

  • Sankaram MB, Thompson TE (1990) Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29:10670–10675

    Article  PubMed  CAS  Google Scholar 

  • Sankaram MB, Thompson TE (1991) Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci USA 88:8686–8690

    Article  PubMed  CAS  Google Scholar 

  • Schreier S, Polnaszek CF, Smith IC (1978) Spin labels in membranes. Problems in practice. Biochim Biophys Acta 515:395–436

    PubMed  CAS  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci USA 86:4474–4478

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30:8578–8590

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Wisniewska A, Yin J–J, Hyde JS, Kusumi A (1994) Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33:7670–7681

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Pasenkiewicz-Gierula M, McElhaney RN, Hyde JS, Kusumi A (2003) Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues. Biochemistry 42:3939–3948

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Widomska J, Wisniewska A, Kusumi A (2007a) Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains methods in molecular biology, lipid rafts, vol 398. Humana Press, Totowa, pp 143–157

    Google Scholar 

  • Subczynski WK, Wisniewska A, Hyde JS, Kusumi A (2007b) Three-dimensional dynamic structure of the liquid-ordered domain in lipid membranes as examined by pulse-EPR oxygen probing. Biophys J 92:1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Subczynski WK, Raguz M, Widomska J (2010) Studying lipid organization in biological membranes using liposomes and EPR spin labeling. Methods Mol Biol 606:247–269

    Article  PubMed  CAS  Google Scholar 

  • Swamy MJ, Ciani L, Ge M, Smith AK, Holowka D, Baird B, Freed JH (2006) Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J 90:4452–4465

    Article  PubMed  CAS  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    Article  PubMed  CAS  Google Scholar 

  • Widomska J, Raguz M, Dillon J, Gaillard ER, Subczynski WK (2007a) Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochim Biophys Acta 1768:1454–1465

    Article  PubMed  CAS  Google Scholar 

  • Widomska J, Raguz M, Subczynski WK (2007b) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta 1768:2635–2645

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska A, Subczynski WK (2006a) Accumulation of macular xanthophylls in unsaturated membrane domains. Free Radic Biol Med 40:1820–1826

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska A, Subczynski WK (2006b) Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes. Free Radic Biol Med 41:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska A, Subczynski WK (2008) The liquid-ordered phase in sphingomyelin-cholesterol membranes as detected by the discrimination by oxygen transport (DOT) method. Cell Mol Biol Lett 13:430–451

    Article  PubMed  CAS  Google Scholar 

  • Yappert MC, Borchman D (2004) Sphingolipids in human lens membranes: an update on their composition and possible biological implications. Chem Phys Lipids 129:1–20

    Article  PubMed  CAS  Google Scholar 

  • Yappert MC, Rujoi M, Borchman D, Vorobyov I, Estrada R (2003) Glycero- versus sphingo-phospholipids: correlations with human and non-human mammalian lens growth. Exp Eye Res 76:725–734

    Article  PubMed  CAS  Google Scholar 

  • Yin J-J, Subczynski WK (1996) Effects of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron spin resonance spin labeling study. Biophys J 71:832–839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants EY015526, TW008052, EB002052, and EB001980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold K. Subczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainali, L., Raguz, M. & Subczynski, W.K. Phases and domains in sphingomyelin–cholesterol membranes: structure and properties using EPR spin-labeling methods. Eur Biophys J 41, 147–159 (2012). https://doi.org/10.1007/s00249-011-0766-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0766-4

Keywords

Navigation