Skip to main content
Log in

Analysis of membrane-localized binding kinetics with FRAP

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Interactions between plasma membrane-associated proteins on interacting cells are critical for many important biological processes. Few experimental techniques, however, can accurately determine the association and the dissociation rates between such interacting pairs when the two molecules diffuse on apposing membranes or lipid bilayers. In this study, we give a theoretical description of how and when fluorescence recovery after photobleaching (FRAP) experiments can be used to quantify these reaction rates. We analyze the effect of binding on FRAP recovery curves with a reaction–diffusion model and systematically identify different regimes in the parameter space of the association and the dissociation constants for which the full model simplifies into equivalent one-parameter models. Based on this analysis, we propose an experimental protocol that may be used to identify the kinetic parameters of binding in the appropriate parameter regime. We present simulated experiments illustrating our protocol and lay down guidelines for parameter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov B, Csaki F (eds) 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Axelrod D et al (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Google Scholar 

  • Beaudouin J et al (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90(6):1878–1894

    Article  Google Scholar 

  • Braga J et al (2004) Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell 15(10):4749–4760

    Article  Google Scholar 

  • Braga J et al (2007) A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 92(8):2694–2703

    Article  Google Scholar 

  • Bromley SK et al (2001) The immunological synapse and CD28–CD80 interactions. Nat Immunol 2(12):1159–1166

    Article  Google Scholar 

  • Campi G et al (2005) Actin and agonist MHC–peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036

    Article  MathSciNet  Google Scholar 

  • Carrero G et al (2003) Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29(1):14–28

    Article  MathSciNet  Google Scholar 

  • Coombs D, Goldstein B (2005) T cell activation: kinetic proofreading, serial engagement and cell adhesion. J Comput Appl Math 184:121–139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Davis MM et al (2003) Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem 72:717–742

    Article  Google Scholar 

  • Dushek O, Coombs D (2007) Improving parameter estimation for cell surface FRAP data. J Biochem Biophys Methods. doi:10.1016/j.jbbm.2007.07.002

  • Dustin ML et al (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132(3):465–474

    Article  Google Scholar 

  • Dustin ML et al (1997) Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J Biol Chem 272(49):30889–30898

    Article  Google Scholar 

  • Ellenberg J et al (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  Google Scholar 

  • Favier B et al (2001) TCR dynamics on the surface of living T cells. Int Immunol 13(12):1525–1532

    Article  Google Scholar 

  • Garland PB (1996) Optical evanescent wave methods for the study of biomolecular interactions. Q Rev Biophys 29:91–117

    Article  Google Scholar 

  • Goodwin JS, Kenworthy A (2005) Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 37:154–164

    Article  Google Scholar 

  • Grakoui A et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  Google Scholar 

  • Hinow P et al (2006) The DNA binding activity of p53 displays reaction-diffusion kinetics. Biophys J 91:330–342

    Article  ADS  Google Scholar 

  • Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171

    Article  ADS  Google Scholar 

  • Kenworthy AK et al (2004) Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165(5):735–746

    Article  Google Scholar 

  • Kim SA, Schwille P (2003) Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr Opin Neurobiol 13(5):583–590

    Article  Google Scholar 

  • Klonis N et al (2002) Fluorescence photobleaching analysis for the study of cellular dynamics. Eur Biophys J 31:36–51

    Article  Google Scholar 

  • Kohl T et al (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89(4):2770–2782

    Article  MathSciNet  Google Scholar 

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford, chap 22, pp 138–142. Available online at http://www.graphpad.com/index.cfm?cmd=library.page&pageID=7&categoryID=1

  • Pando B et al (2006) Messages diffuse faster than messengers. Proc Natl Acad Sci USA 14:5338–5342

    Article  ADS  Google Scholar 

  • Rabut G, Ellenberg J (2004) Photobleaching techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, iFRAP and FLIP. In: Goldman RD, Spector DL (eds) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, chap 6, pp 101–127

  • Rich RI, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotech 11:54–61

    Article  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Nat Acad Sci USA 72:3111–3113

    Article  ADS  Google Scholar 

  • Sbalzarini I et al (2006) Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90:878–885

    Article  Google Scholar 

  • Schlessinger J et al (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73(7):2409–2413

    Article  ADS  Google Scholar 

  • Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730

    Article  Google Scholar 

  • Sprague BL et al (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495

    Article  Google Scholar 

  • Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91

    Article  Google Scholar 

  • Varma R et al (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127

    Article  Google Scholar 

  • Wu M et al (2004) Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc Natl Acad Sci USA 101(38):13798–13803

    Article  ADS  Google Scholar 

  • Zal T, Gascoigne NR (2004) Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr Opin Immunol 16:418

    Article  Google Scholar 

  • Zhu D-M et al (2007) Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 92:1022–1034

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC and MITACS NCE. We are indebted to Salvatore Valitutti for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coombs.

Additional information

Advanced neutron scattering and complementary techniques to study biological systems. Contributions from the meetings, “Neutrons in Biology”, STFC Rutherford Appleton Laboratory, Didcot, UK, 11–13 July and “Proteins At Work 2007”, Perugia, Italy, 28–30 May 2007.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (145 kb)

Appendix: evaluation of theoretical FRAP recovery curves

Appendix: evaluation of theoretical FRAP recovery curves

Simple FRAP analysis

In typical surface photobleaching experiments, the photobleached area is much smaller than the total area of the plasma membrane. Therefore, we can assume that the domain is effectively infinite in extent without introducing appreciable error. For the parameter regimes that reduce to simple diffusion (cases 1–3), the FRAP recovery curve is determined by Eq. 9 with initial conditions

$$ u(t=0) = 1- \left[H(x + X_b/2) - H(x - X_b/2)\right] \left[H(y + Y_b/2) - H(y - Y_b/2) \right] $$
(13)

where H(x) is the Heaviside step-function. This is easily solved by Fourier transform, and the desired FRAP recovery curve is then obtained by integrating u over the monitoring region (−X m /2 ≤ x ≤  X m /2,−Y m /2 ≤ y ≤ Y m /2), to obtain the following expression for the theoretical FRAP recovery curve (Dushek and Coombs 2007):

$$ \begin{aligned} U(t,D) & = 1 - \,\frac{\sqrt{Dt}}{2\pi X_m Y_m} \left\{\sqrt{\pi} \left[X_+ \hbox{erf} (X_{+}) - X_{-} \hbox{erf} (X_{-})\right] + \left[\exp(-X_{+}^{2}) - \exp(-X_{-}^{2}) \right] \right\} \\ & \quad \times \left\{\sqrt{\pi} \left[Y_{+} \hbox{erf}(Y_{+}) - Y_{-} \hbox{erf}(Y_{-})\right] + \left[\exp(-Y_{+}^{2}) - \exp(-Y_{-}^{2}) \right] \right\} \end{aligned} $$
(14)

where we define

$$ X_{\pm} = \,\frac{X_b \pm X_m}{4\sqrt{Dt}} \quad \hbox{and} \quad Y_{\pm} = \,\frac{Y_{b} \pm Y_{m}}{4\sqrt{Dt}}. $$
(15)

This expression can be fit to data to determine the parameter D.

FRAP with binding kinetics

We are now concerned with solving Eqs. 3 and 4. Taking the Fourier transform (denoted with hats), we obtain the linear system

$$ \partial {\hat{f}} / \partial t = D_{\rm f} (-4\pi^2 q^2_x - 4\pi^2 q^2_y) {\hat{f}} - k_{\rm on}^{*} {\hat{f}} + k_{\rm off} {\hat{c}}, $$
(16a)
$$ \partial {\hat{c}} / \partial t = D_{\rm c} (-4\pi^2 q^2_x - 4\pi^2 q^2_y) {\hat{c}} + k_{\rm on}^{*} {\hat{f}} - k_{\rm off} {\hat{c}}. $$
(16b)

We define q f = 4π2 D f (q 2 x  + q 2 y ) + k *on and q c = 4π2 D c (q 2 x  + q 2 y ) + k off to obtain

$$ {{\partial {\hat{f}}}\over {\partial t}} = -q_f {\hat{f}} + k_{\rm off} {\hat{c}}, $$
(17a)
$$ \,\frac{\partial {\hat{c}}}{\partial t} = k_{\rm on}^{*}\,{\hat{f}} - q_c {\hat{c}}, $$
(17b)

whose solutions are

$$ \begin{aligned} {\hat{f}} & = \,\frac{1}{v} \left[(1/2) {\hat{f}} (t=0) \left(\exp(D_{1}t)(q_c - q_f + v) + \exp(D_{2} t)(-q_c + q_p + v)\right) \right. \\ & \quad \left. + k_{\rm off} {\hat{c}}(t=0) (\exp(D_{1}t) - \exp(D_{2}t)) \right], \end{aligned} $$
(18a)
$$ \begin{aligned} {\hat{c}} & = \,\frac{1}{v} \left[ (1/2) {\hat{c}} (t=0) \left(\exp(D_{1}t)(-q_c + q_f + v) + \exp(D_{2}t) (q_c - q_f + v)\right) \right. \\ & \quad \left. + k_{\rm on}^{*} {\hat{f}}(t=0) (\exp(D_{1}t) - \exp(D_{2}t)) \right] \end{aligned} $$
(18b)

where v = [(q c q f )2 + 4k *on k off]1/2, D 1 =  (−q c q f  + v)/2, D 2 = (−q c q f v)/2. \({\hat{f}}(t=0)\;\hbox{and} \;{\hat{c}}(t=0)\) are Fourier transforms of the initial conditions,

$$ {\hat{f}}(t=0) = -F_{\rm eq} \hbox{sinc}(\pi X_b q_x) \hbox{sinc}(\pi Y_b q_y) + F_{\rm eq} \delta(q_x) \delta(q_y) $$
(19a)
$$ {\hat{c}}(t=0) = -C_{\rm eq} \hbox{sinc}(\pi X_b q_x) \hbox{sinc}(\pi Y_b q_y) + C_{\rm eq} \delta(q_x) \delta(q_y). $$
(19b)

where F eqk off/(k *on  + k off) and F eqk *on /(k *on  + k off). We obtain these relationships by assuming that the system is in equilibrium prior to the FRAP experiment (k *on F eqk off C eq) and the FRAP recovery can be normalized to unity (F eq + C eq = 1), see Sprague et al. (2004).

It is not possible to obtain an analytical inverse Fourier transform of these equations, and therefore theoretical FRAP recovery curves must be numerically computed. These are obtained by integrating the sum f + c over the monitoring region, and dividing by the area of the monitoring region to obtain the mean fluorescence intensity over this area. Thus, for a rectangular monitoring region of dimensions X m (≤ X b ) by Y m (≤ Y b ), the recovery curve is given by

$$ G_{\rm fm}(t) = \left(\int\limits^{X_m/2}_{-X_m/2} {\rm d}x \int\limits^{Y_m/2}_{-Y_m/2} {\rm d}y \left[f(t,x,y) + c(t,x,y) \right]\,\right)\left/ \left(X_m Y_m\right)\right., $$
(20)

and, by definition of the inverse Fourier transform,

$$ \begin{aligned} G_{\rm fm}(t) & = \,\frac{1}{4 X_m Y_m} \int\limits^{X_m}_{-X_m}{\rm d}x \int\limits^{Y_m}_{-Y_m} {\rm d}y \int\limits^{\infty}_{-\infty} {\rm d}q_x \int\limits^{\infty}_{-\infty} {\rm d}q_y \left[{\hat{f}} (t, q_x, q_y) + {\hat{c}}(t, q_x, q_y)\right] \\ & \quad \times \exp(2 \pi \imath q_x x) \exp(2\pi \imath q_y y) \\ & = \int\limits^{\infty}_{-\infty} {\rm d}q_x \int\limits^{\infty}_{-\infty} {\rm d}q_y \left[{\hat{f}}(t, q_x, q_y) + {\hat{c}}(t, q_x, q_y) \right] \hbox{sinc}(\pi q_x X_m) \hbox{sinc}(\pi q_y Y_m) \\ & = 4 \int\limits^{\infty}_{0} {\rm d}q_x \int\limits^{\infty}_{0} {\rm d}q_y \left[{\hat{f}}(t, q_x, q_y) + {\hat{c}}(t, q_x, q_y)\right] \hbox{sinc}(\pi q_x X_m) \hbox{sinc}(\pi q_y Y_m), \end{aligned} $$
(21)

which we compute by numerical integration. We found integrating to 15–20 in q x and q y yields sufficient accuracy for our purposes. Using the Matlab function quadl , the above integral can be evaluated 100 times (typical number of images in FRAP experiments) in approximately 3 s, allowing parameter fits in a reasonable timeframe using a standard fitting procedure. All fits presented in this work were carried out using the Matlab function lsqcurvefit .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dushek, O., Das, R. & Coombs, D. Analysis of membrane-localized binding kinetics with FRAP. Eur Biophys J 37, 627–638 (2008). https://doi.org/10.1007/s00249-008-0286-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0286-z

Keywords

Navigation