Skip to main content
Log in

Fluorescence imaging with two-photon evanescent wave excitation

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A–D.
Fig. 5A–F.

Similar content being viewed by others

Abbreviations

1PEF:

one-photon excited fluorescence

2PEF:

two-photon excited fluorescence

APD:

avalanche photo diode

CHO:

Chinese hamster ovary

DMEM:

Dulbecco's modified Eagle's medium

EGFP:

enhanced green fluorescent protein

EW:

evanescent wave

FCS:

fetal calf serum

GPI:

glycosylphosphatidylinositol

TIR:

total internal reflection

References

  • Artmann K (1948) Berechnung der Seitenversetzung des Totalreflektierten Strahles. Ann Phys 6:87–102

    Google Scholar 

  • Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30:245–270

    CAS  PubMed  Google Scholar 

  • Axelrod D (2001a) Selective imaging of surface fluorescence with very high aperture microscopy objectives. J Biomed Opt 6:6–13

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D (2001b) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  CAS  PubMed  Google Scholar 

  • Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268

    CAS  PubMed  Google Scholar 

  • Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:1–3

    Google Scholar 

  • Bicknese S, Perasamy N, Shohet SB, Verkman AS (1993) Cytoplasmic vicosity near the cell plasma membrane: measurement by evanescent field frequency domain microfluorimetry. Biophys J 65:1272–1282

    CAS  PubMed  Google Scholar 

  • Bloembergen N, Lee CH (1968) Total reflection in second-harmonic generation. Phys Lett 19:835–837

    Article  Google Scholar 

  • Bordo VG, Loerke J, Rubahn H-G (2001) Two-photon evanescent-volume wave spectroscopy: a new account of gas-solid dynamics in the boundary layer. Phys Rev Lett 86:1490–1493

    Article  CAS  PubMed  Google Scholar 

  • Caldwell JB (1997) Ultra high NA microscope objective. Opt Photonics News 11:44–46

    Google Scholar 

  • Chew H, Wang D-S, Kerker M (1979) Elastic scattering of evanescent electromagnetic waves. Appl Opt 18:2679–2687

    Google Scholar 

  • Darchen F, Zahraoui A, Hammel F, Monteils MP, Tavitian A, Scherman D (1990) Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc Natl Acad Sci USA 87:5692–5696

    CAS  PubMed  Google Scholar 

  • Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  PubMed  Google Scholar 

  • Epstein JR, Brian I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36

    Article  CAS  Google Scholar 

  • Ferguson J, Mau AWH (1972) Absorption studies of acid-base equilibria of dye solutions. Chem Phys Lett 17:543–546

    Article  CAS  Google Scholar 

  • Funatsu T, Harada Y, Higuchi H, Tokunagag M, Saito K, Ishii Y, Vale RD, Yanagida T (1997) Imaging and nano-manipulation of single biomolecules. Biophys Chem 68:63–72

    Article  CAS  PubMed  Google Scholar 

  • Goos F, Hänchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 6:333–346

    Google Scholar 

  • Gryczynski I, Gryczynski Z, Lakowicz JR (1997) Two-photon excitation by the evanescent wave from total internal-reflection. Anal Biochem 247:69–76

    Article  CAS  PubMed  Google Scholar 

  • Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New York

  • Huang Z, Thompson NL (1993) Theory for two-photon excitation in pattern photobleaching with evanescent illumination. Biophys Chem 47:241–249

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Abe C, Kaneda T, Aono Y, Abe K, Tamura K, Terakawa S (2001) High-numerical aperture objective lenses and optical system improved objective-type total internal reflection fluorescence microscopy. Proc SPIE XX:142–153

    Google Scholar 

  • Keller P, Toomre D, Diaz E, White J, Simons K (2001) Multicolor imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 3:140–149

    Article  CAS  PubMed  Google Scholar 

  • Kiguchi M, Kato M, Okunaka M, Tnaiguchi Y (1992) New method of measuring second harmonic generation efficiency using powder crystals. Appl Phys Lett 60:1933–1935

    Article  Google Scholar 

  • Loerke D, Stühmer W, Oheim M (2002) Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J Neurosci Methods 119:65–73

    Article  PubMed  Google Scholar 

  • Mertz J (1998) Molecular photodynamics involved in multi-photon excitation fluorescence microscopy. Eur Phys J D 3:53–66

    Article  CAS  Google Scholar 

  • Mertz J (2000) Radiative absorption, fluorescence and scattering of a classical dipole near a lossless interface: a unified description. J Soc Opt Am B 17:1906–1913

    CAS  Google Scholar 

  • Oheim M, Stühmer W (2000) Tracking individual granules through the actin cortex. Eur Biophys J 29:67–89

    Article  CAS  PubMed  Google Scholar 

  • Oheim M, Loerke D, Stühmer W, Chow RH (1998) The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur Biophys J 27:83–98

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78:2641–2654

    CAS  PubMed  Google Scholar 

  • Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21:4896–4905

    Article  CAS  PubMed  Google Scholar 

  • Snyder AW, Love JD (1976) Goos-Hänchen shift. Appl Opt 15:236–238

    Google Scholar 

  • Sonnleitner A, Mannuzzu LM, Terakawa S, Isacoff EY (2002) Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci USA 99:12759–12764

    Article  CAS  PubMed  Google Scholar 

  • Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Cell Biol 2:268–275

    Article  CAS  Google Scholar 

  • Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478

    PubMed  Google Scholar 

  • Stout AL, Axelrod D (1989) Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 28:5237–5242

    CAS  Google Scholar 

  • Thompson NL, Lagerholm BC (1997) Total internal reflection fluorescence: applications in cellular biophysics. Curr Opin Biotechnol 8:58–64

    PubMed  Google Scholar 

  • Thompson NL, Pearce KH, Hsieh HV (1993) Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur Biopyhs J 22:367–378

    CAS  Google Scholar 

  • Toomre D, Manstein DJ (2001) Lightning up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:296̄–303

    Article  Google Scholar 

  • Toriumi M, Masuhara H (1991) Time-resolved total internal reflection fluorescence spectroscopy: principles, instruments and applications. Spectrochim Acta Rev 14:353–377

    CAS  Google Scholar 

  • Tsuboi T, Zhao C, Terakawa S, Rutter GA (2000) Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytic event. Curr Biol 10:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Tuchin V (2000) Tissue optics. Light scattering methods and instruments for medical diagnosis, vol TT38. SPIE Press, Bellingham

Download references

Acknowledgements

We thank T. Pons and G. Bunt for help with some experiments, J.-S. Schonn and C. Chapuis for chromaffin cell preparation and B. Babour for comments on the manuscript. Supported by the French Ministry of Research and Technology (M.N.R.E.T.) (ACI "jeunes chercheurs" no. 5242, to M.O.) and a Studienstiftung fellowship to F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oheim.

Additional information

This paper is dedicated to the memory of Prof. Horst Harreis (1940–2002)

Appendix

Appendix

Two-photon evanescent wave excitation volume

Assuming no stimulated emission or self-quenching, the number of fluorescence photons collected per unit time following a m th-order excitation process is given by:

$$ {F(t) = {1 \over 2}\phi \eta _{{m\omega }} {\left( {\sigma _{{m\omega }} {\int\limits_V {I^{m} ({\bf{x}},t)C({\bf{x}},t)\,{\rm{d}}{\bf{x}}} }} \right)}} $$
(A1)

where φ, η , σ m and C are the collection efficiency, the quantum efficiency, m-photon excitation cross-section and the fluorophore concentration, respectively. The term in brackets is the number of absorbed photons. In the absence of saturation and photobleaching, \( F(t) \propto I^m (t) \) and C(x,t)=C=const. Let W(x) and I(t) denote the spatial and temporal excitation profile. We further introduce a volume contrast:

$$ \gamma _{{m\omega }} = {{\int\limits_V {W^{2}_{{m\omega }} ({\mathbf{x}})\,{\text{d}}{\mathbf{x}}} }} \mathord{\left/ {\vphantom {{{\int\limits_V {W^{2}_{{m\omega }} ({\mathbf{x}})\,{\text{d}}{\mathbf{x}}} }} {{\int\limits_V {W_{{m\omega }} ({\mathbf{x}})\,{\text{d}}{\mathbf{x}}} }}}} \right. \kern-\nulldelimiterspace} {{\int\limits_V {W_{{m\omega }} ({\mathbf{x}})\,{\text{d}}{\mathbf{x}}} }} $$
(A2)

Then:

$$ {F(t) = {1 \over 2}\phi \eta _{{m\omega }} \sigma _{{m\omega }} CI^{m} (t){\left( {\gamma ^{{ - 1}}_{{m\omega }} {\int\limits_V {W_{{m\omega }} ({\bf{x}})\,{\rm{d}}} }{\bf{x}}} \right)}} $$
(A3)

where the term in brackets denotes the excitation volume, V . In practice, we only measure the time-averaged photon flux \( \left\langle {F(t)} \right\rangle \):

$$ \left\langle {F(t)} \right\rangle = {1 \over 2}c_{m\omega } \left\langle {I(t)} \right\rangle ^m V_{m\omega } $$
(A4)

where φησC and the m th-order temporal coherence \( g = {{\left\langle {I^m (t)} \right\rangle } \mathord{\left/ {\vphantom {{\left\langle {I^m (t)} \right\rangle } {\left\langle {I(t)} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {I(t)} \right\rangle }}^m \) are combined to a fluorophore and instrument parameter c . The average fluorescence is proportional to the average intensity raised to the mth power and the m-photon excitation volume.

In the case of m-photon evanescent-field excitation, the beam's half width w r and the angle of incidence ϑ at the reflecting interface (\( n_{2,m\omega } > n_{1,m\omega } \)) determine the spatial excitation profile, \( W_{m\omega } (r) \propto \exp \left( {{{ - mr^2 \cos \vartheta } \mathord{\left/ {\vphantom {{ - mr^2 \cos \vartheta } {2w_r^2 }}} \right. \kern-\nulldelimiterspace} {2w_r^2 }}} \right) \) and \( W_{m\omega } (z) \propto \exp \left( { - mz/w_z (\vartheta )} \right) \). Here r and z denote distances within and perpendicular to the interface plane, respectively, w r is the half-width of the illumination beam in the specimen plane at normal incidence (ϑ=0), and \( w_z (\vartheta ) = {\lambda \mathord{\left/ {\vphantom {\lambda {\left( {4\pi (n_2^2 \sin ^2 (\vartheta ) - n_1^2 )^{1/2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {4\pi (n_2^2 \sin ^2 (\vartheta ) - n_1^2 )^{1/2} } \right)}} \) is the distance over which the evanescent-field intensity decays to 1/e of its value at the reflecting interface at z=0 (typically called "penetration depth"). For through-the-objective EW excitation, w r and ϑ can be approximated as: \( \emptyset _{{\rm{pupil}}} w_0 /(2f_{{\rm{FL}}} {\rm{)}} \) and arcsin (\( M\rho /(n_{2,m\omega } f_{{\rm{TL}}} ) \), respectively. \( \emptyset _{{\rm{pupil}}}, \) M and \( {n_{{2,m\omega }} } \) denote the diameter of the objective's back pupil, magnification and refractive index of the immersion medium, respectively, w 0 is the beam's half-width at the focusing lens, and f FL and f TL are the focal lengths of the focusing lens and tube lens, respectively (see Fig. 1); ρ denotes a radial displacement of the focused beam relative to the optical axis.

Substituting the expressions for W(r) and W(z) into Eqs. (A2) and (A3) and integrating over a volume element rdrdϕdz we obtain \( \int {W_{m\omega } (x)} \,{\rm{d}}x \propto 2{{\pi w_r^2 w_z (\vartheta )} \mathord{\left/ {\vphantom {{\pi w_r^2 w_z (\vartheta )} {\left( {m^2 \cos (\vartheta )} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {m^2 \cos (\vartheta )} \right)}} \) and \( \gamma = {\textstyle{1 \over 4}} \), independent of m. Thus for non-linear evanescent-field fluorescence excitation, the excitation volume is given by:

$$ V_{m\omega } \approx {{8\pi } \over {m^2 \cos (\vartheta )}}w_r^2 w_z (\vartheta ) $$
(A5)

Substituting in Eq. (A4):

$$ \left\langle {F(t)} \right\rangle = {{4\pi c_{m\omega } w_r^2 } \over {m^2 \cos (\vartheta )}}\left\langle {I(t)} \right\rangle ^m w_z (\vartheta ) $$
(A6)

from which we note that the total generated fluorescence is proportional to w z (ϑ). We can thus determine, at a beam angle ϑ, w z (ϑ) from a linear fit to a plot of \( \left\langle {F(t)} \right\rangle \), normalized by instrument and fluorophore parameters, versus the average EW intensity raised to the m th power.

How does Eq. (A5) compare with the excitation volume in two-photon scanning microscopy? For the Gaussian–Lorentzian intensity profile of a tightly focused excitation beam: \( V_{2\omega }^{({\rm{GL}})} = {\textstyle{{16} \over 3}}\pi ^2 w_r^2 z_0 \) and \( \gamma = {\textstyle{3 \over {16}}} \) (Mertz 1998). We approximate \( w_r \approx {{0.26\lambda } \mathord{\left/ {\vphantom {{0.26\lambda } {\sin \vartheta _{{\rm{NA}}} }}} \right. \kern-\nulldelimiterspace} {\sin \vartheta _{{\rm{NA}}} }} \) and \( z_0 = {{4\pi w_r^2 } \mathord{\left/ {\vphantom {{4\pi w_r^2 } \lambda }} \right. \kern-\nulldelimiterspace} \lambda } \) is the Rayleigh length, where NA>0.8 has been assumed. ϑNA is the half-angle spanned by the NA. Thus, for a 0.9-NA water immersion objective, \( V_{2\omega }^{({\rm{GL}})} \)≈7 fl. To observe 2PEF upon EW excitation with w z ≈0.2 µm at comparable levels of incident power, we hence need to restrict the lateral spot size to w r ≈3 µm, close to what was observed experimentally (Fig. 2B). As fluorescence is excited within a volume section of w z (ϑ)/m thickness, the effective excitation depth in one and multiphoton EW microscopy are equal, for excitation of the same fluorophore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schapper, F., Gonçalves, J.T. & Oheim, M. Fluorescence imaging with two-photon evanescent wave excitation. Eur Biophys J 32, 635–643 (2003). https://doi.org/10.1007/s00249-003-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0326-7

Keywords

Navigation