Skip to main content
Log in

Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The patterns and drivers of bacterial strain dominance remain poorly understood in natural populations. Here, we cultured 1292 Bradyrhizobium isolates from symbiotic root nodules and the soil root interface of the host plant Acmispon strigosus across a >840-km transect in California. To investigate epidemiology and the potential role of accessory loci as epidemic drivers, isolates were genotyped at two chromosomal loci and were assayed for presence or absence of accessory “symbiosis island” loci that encode capacity to form nodules on hosts. We found that Bradyrhizobium populations were very diverse but dominated by few haplotypes—with a single “epidemic” haplotype constituting nearly 30 % of collected isolates and spreading nearly statewide. In many Bradyrhizobium lineages, we inferred presence and absence of the symbiosis island suggesting recurrent evolutionary gain and or loss of symbiotic capacity. We did not find statistical phylogenetic evidence that the symbiosis island acquisition promotes strain dominance and both symbiotic and non-symbiotic strains exhibited population dominance and spatial spread. Our dataset reveals that a strikingly few Bradyrhizobium genotypes can rapidly spread to dominate a landscape and suggests that these epidemics are not driven by the acquisition of accessory loci as occurs in key human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230. doi:10.1038/nrmicro2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sachs JL, Skophammer RG, Bansal N, Stajich JE (2013) Evolutionary origins and diversification of proteobacterial mutualists. Proc R Soc B Biol Sci 281:20132146–20132146. doi:10.1098/rspb.2013.2146

    Article  Google Scholar 

  3. Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794. doi:10.1016/S0092-8674(00)81985-6

    Article  CAS  PubMed  Google Scholar 

  4. Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602. doi:10.1093/molbev/msg154

    Article  CAS  PubMed  Google Scholar 

  5. Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8:1707–1719. doi:10.1111/j.1462-5822.2006.00794.x

    Article  CAS  PubMed  Google Scholar 

  6. Bach S (2000) The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294. doi:10.1016/S0378-1097(00)00005-7

    Article  CAS  PubMed  Google Scholar 

  7. Diep BA, Gill SR, Chang RF et al (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. doi:10.1016/S0140-6736(06)68231-7

    Article  CAS  PubMed  Google Scholar 

  8. Qiu X, Gurkar AU, Lory S (2006) Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci 103:19830–19835. doi:10.1073/pnas.0606810104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew

  10. Sugawara M, Epstein B, Badgley BD et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:R17. doi:10.1186/gb-2013-14-2-r17

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645. doi:10.1029/1999GB900014

    Article  CAS  Google Scholar 

  12. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp. 017004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uchiumi T, Ohwada T, Itakura M et al (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448. doi:10.1128/JB.186.8.2439-2448.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pessi G, Ahrens CH, Rehrauer H et al (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules. Mol Plant Microbe Interact 20:1353–1363. doi:10.1094/MPMI-20-11-1353

    Article  CAS  PubMed  Google Scholar 

  15. Kaneko T (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338. doi:10.1093/dnares/7.6.331

    Article  CAS  PubMed  Google Scholar 

  16. Galibert F (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672. doi:10.1126/science.1060966

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko T, Nakamura Y, Sato S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197. doi:10.1093/dnares/9.6.189

    Article  PubMed  Google Scholar 

  18. Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee K-B, De Backer P, Aono T et al (2008) The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9:271. doi:10.1186/1471-2164-9-271

    Article  PubMed  PubMed Central  Google Scholar 

  20. Young JPW (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  21. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201. doi:10.1128/MMBR.64.1.180-201.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moulin L, Béna G, Boivin-Masson C, Stępkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732. doi:10.1016/S1055-7903(03)00255-0

    Article  CAS  PubMed  Google Scholar 

  23. Segovia L, Piñero D, Palacios R, Martínez-Romero E (1991) Genetic structure of a soil population of Rhizobium leguminosarum. Appl Environ Microbiol 57:426–433

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sachs JL, Ehinger MO, Simms EL (2010) Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J Evol Biol 23:1075–1089. doi:10.1111/j.1420-9101.2010.01980.x

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818–2825

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito A, Mitsui H, Hattori R et al (1998) Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicumin. FEMS Microbiol Ecol 25:277–286. doi:10.1111/j.1574-6941.1998.tb00480.x

    Article  CAS  Google Scholar 

  27. Pongsilp N, Teaumroong N, Nuntagij A et al (2002) Genetic structure of indigenous non-nodulating and nodulating populations of Bradyrhizobium in soils from Thailand. Symbiosis 33:39–58

    CAS  Google Scholar 

  28. Okubo T, Tsukui T, Maita H et al (2012) Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ JSME 27:306–315

    Article  Google Scholar 

  29. Bhatt AS, Freeman SS, Herrera AF et al (2013) Sequence-based discovery of Bradyrhizobium enterica in cord colitis syndrome. N Engl J Med 369:517–528. doi:10.1056/NEJMoa1211115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaintreuil C, Giraud E, Prin Y et al (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447. doi:10.1128/AEM.66.12.5437-5447.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costello EK, Carlisle EM, Bik EM, et al. (2013) Microbiome assembly across multiple body sites in low-birthweight infants. mBio 4:e00782–13–e00782–13. doi: 10.1128/mBio.00782-13

  32. Hunt KM, Foster JA, Forney LJ et al (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6, e21313. doi:10.1371/journal.pone.0021313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sachs JL, Kembel SW, Lau AH, Simms EL (2009) In situ phylogenetic structure and diversity of wild Bradyrhizobium communities. Appl Environ Microbiol 75:4727–4735. doi:10.1128/AEM.00667-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. doi:10.1016/j.ympev.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  35. Vinuesa P, Rojas-Jimenez K, Contreras-Moreira B et al (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol 74:6987–6996. doi:10.1128/AEM.00875-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Azevedo A, Martins-Lopes F, Silla RP, Hungria M (2015) A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 16:S10

    Article  PubMed  PubMed Central  Google Scholar 

  37. VanInsberghe D, Maas KR, Cardenas E et al (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J. doi:10.1038/ismej.2015.54

    PubMed  Google Scholar 

  38. Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110. doi:10.1016/j.syapm.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  39. Parker MA (2015) The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. Microb Ecol. doi:10.1007/s00248-014-0503-5

    PubMed  Google Scholar 

  40. Göttfert M, Röthlisberger S, Kündig C et al (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412. doi:10.1128/JB.183.4.1405-1412.2001

    Article  PubMed  PubMed Central  Google Scholar 

  41. Giraud E, Moulin L, Vallenet D et al (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312. doi:10.1126/science.1139548

    Article  PubMed  Google Scholar 

  42. Maddison WP, Maddison DR (2005) MacClade: analysis of phylogeny and character evolution

  43. Sachs JL, Russell JE, Hollowell AC (2011) Evolutionary instability of symbiotic function in Bradyrhizobium japonicum. PLoS ONE 6, e26370. doi:10.1371/journal.pone.0026370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ehinger M, Mohr TJ, Starcevich JB et al (2014) Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol 14:8. doi:10.1186/1472-6785-14-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Parker M (2000) Divergent Bradyrhizobium symbionts on Tachigali versicolor from Barro Colorado Island, Panama. Syst Appl Microbiol 23:585–90

    Article  CAS  PubMed  Google Scholar 

  46. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  48. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552. doi:10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  49. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114

    Article  CAS  Google Scholar 

  50. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  51. Mcinnes A (2004) Structure and diversity among rhizobial strains, populations and communities—a review. Soil Biol Biochem 36:1295–1308. doi:10.1016/j.soilbio.2004.04.011

    Article  CAS  Google Scholar 

  52. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hudson RR (1987) Estimating the recombination parameter of a finite population model without selection. Genet Res 50:245–250

    Article  CAS  PubMed  Google Scholar 

  56. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  57. Harmon LJ, Weir JT, Brock CD et al (2007) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. doi:10.1093/bioinformatics/btm538

    Article  PubMed  Google Scholar 

  58. Orme D (2012) The caper package: comparative analysis of phylogenetics and evolution in R

  59. Maddison, W. P., Maddison, D. R. (2011) Mesquite

  60. SAS Institute Inc (1989) JMP. SAS Institute Inc., Cary, NC

  61. Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2: PASSaGE. Methods Ecol Evol 2:229–232. doi:10.1111/j.2041-210X.2010.00081.x

    Article  Google Scholar 

  62. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27. doi:10.1038/ismej.2009.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  64. Silva C, Eguiarte LE, Souza V (1999) Reticulated and epidemic population genetic structure of Rhizobium etli biovar phaseoli in a traditionally managed locality in Mexico. Mol Ecol 8:277–287. doi:10.1046/j.1365-294X.1999.00564.x

    Article  Google Scholar 

  65. Baldwin BG, Goldman DH (2012) The Jepson manual: vascular plants of California, 2nd edn. University of California Press, Berkeley, Calif

    Google Scholar 

  66. Regus JU, Gano KA, Hollowell AC, Sachs JL (2014) Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization. Proc R Soc B Biol Sci 281:20132587–20132587. doi:10.1098/rspb.2013.2587

    Article  Google Scholar 

  67. Thompson CC, Amaral GR, Campeao M et al (2015) Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 197:359–370. doi:10.1007/s00203-014-1071-2

    Article  CAS  PubMed  Google Scholar 

  68. Dupuy N, Willems A, Pot B et al (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473. doi:10.1099/00207713-44-3-461

    Article  CAS  PubMed  Google Scholar 

  69. Geurts R (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453. doi:10.1104/pp. 112.2.447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hollowell AC, Gano KA, Lopez G et al (2015) Native California soils are selective reservoirs for multidrug-resistant bacteria. Environ Microbiol Rep. doi:10.1111/1758-2229.12269

    PubMed  Google Scholar 

  71. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424. doi:10.1038/nrmicro884

    Article  CAS  PubMed  Google Scholar 

  72. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere: plant species, soil type and rhizosphere communities. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The following grants supported this study: to ACH a Herbert Kraft Scholarship and a UC Riverside Graduate Research Mentorship Fellowship and to JLS NSF DEB 0816663 and NSF DEB 1150278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Sachs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 476 kb)

ESM 2

(PDF 1435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollowell, A.C., Regus, J.U., Gano, K.A. et al. Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California. Microb Ecol 71, 700–710 (2016). https://doi.org/10.1007/s00248-015-0685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0685-5

Keywords

Navigation