Skip to main content
Log in

Stability of Bacterial Composition and Activity in Different Salinity Waters in the Dynamic Patos Lagoon Estuary: Evidence from a Lagrangian-Like Approach

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We employed a Lagrangian-like sampling design to evaluate bacterial community composition (BCC—using temporal temperature gel gradient electrophoresis), community-level physiological profiles (CLPP—using the EcoPlate™ assay), and influencing factors in different salinity waters in the highly dynamic Patos Lagoon estuary (southern Brazil) and adjacent coastal zone. Samples were collected monthly by following limnetic–oligohaline (0–1), mesohaline (14–16), and polyhaline (28–31) waters for 1 year. The BCC was specific for each salinity range, whereas the CLPPs were similar for mesohaline and polyhaline waters, and both were different from the limnetic–oligohaline samples. The limnetic–oligohaline waters displayed an oxidation capacity for almost all organic substrates tested, whereas the mesohaline and polyhaline waters presented lower numbers of oxidized substrates, suggesting that potential activities of bacteria increased from the polyhaline to oligohaline waters. However, the polyhaline samples showed a higher utilization of some simple carbohydrates, amino acids, and polymers, indicating a shortage of inorganic nutrients (especially nitrogen) and organic substrates in coastal saltwater. The hypothesis of bacterial nitrogen limitation was corroborated by the higher Nuse index (an EcoPlate™-based nitrogen limitation indicator) in the polyhaline waters and the importance of NO2 , NO3 , low-molecular-weight substances, and the low-molecular-weight:high-molecular-weight substances ratio, indicated by the canonical correspondence analyses (CCAs). Our results demonstrate the important stability of microbial community composition and potential metabolic activity in the different water salinity ranges, which are independent of the region and time of the year of sample collection in the estuary. This is a quite unexpected result for a dynamic environment such as the Patos Lagoon estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirchman DL (2009) Mysteries of metagenomics revealed. The Limnol Oceanogr Bull 18(1):2–6

    Google Scholar 

  2. Cole JJ (1999) Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems 2:215–225

    Article  Google Scholar 

  3. Apple JK, Smith EM, Boyd TJ (2008) Temperature, salinity, nutrients, and the covariation of bacterial production and chlorophyll-a in estuarine ecosystems. J Coast Res 55:59–75

    Article  CAS  Google Scholar 

  4. Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along the salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453–470

    Article  CAS  Google Scholar 

  5. Troussellier MH, Schäfer N, Batailler L, Bernard C, Courties P, Lebaron G et al (2002) Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France). Aquat Microb Ecol 28:13–24

    Article  Google Scholar 

  6. Langenheder S, Kisand V, Wikner J, Tranvik L (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiol Ecol 45:189–202

    Article  CAS  PubMed  Google Scholar 

  7. Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol 70(6):3425–3433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kirchman DL, Dittel AN, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware estuary. Limnol Oceanogr 50(5):1697–1706

    Article  CAS  Google Scholar 

  9. Crump BC, Hopkinson CS, Sogin ML, Hobbie JE (2004) Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microb 70(3):1494–1505

    Article  CAS  Google Scholar 

  10. Schultz GE, Ducklow H (2000) Changes in bacterioplankton metabolic capabilities along a salinity gradient in the New York river estuary, Virginia, USA. Aquat Microb Ecol 22:163–174

    Article  Google Scholar 

  11. del Giorgio PA, Bouvier TC (2002) Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Oceanogr 47:471–486

    Article  Google Scholar 

  12. Hilmer I, Imberger J (2007) Estimating in situ phytoplankton growth rates with a Lagrangian sampling strategy. Limnol Oceanogr: Methods 5:495–509

    Article  Google Scholar 

  13. Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolfe DA (ed) Estuarine variability. Academic, New York, pp pp 63–82

    Chapter  Google Scholar 

  14. Marques WC, Fernandes EH, Monteiro IO, Möller OO (2009) Numerical modelling of the Patos Lagoon coastal plume, Brazil. Cont Shelf Res 29:556–571

    Article  Google Scholar 

  15. Asmus ML (1998) A planície costeira e a Lagoa dos Patos. In: Seeliger U, Odebrecht C, Castello JP (eds) Os ecossistemas costeiro e marinho do extremo sul do Brasil. Ecoscientia, Rio Grande, p 9. (The coastal plain and the Patos Lagoon. In: The marine and coastal ecosystems of southern Brazil).

  16. Möller OO, Castaing P, Salomon J-C, Lazure P (2001) The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries 24(2):297–311

    Article  Google Scholar 

  17. Hartman C, Schettini CAF (1991) Aspectos hidrológicos na desembocadura da Laguna dos Patos, RS. Rev Bras Geoci 21(4):371–377, Hydrological aspects at the mouth of the Patos Lagoon, RS

    Google Scholar 

  18. Möller O, Fernandes E (2010). Hidrologia e Hidrodinâmica In: Seeliger U, Odebrecht C (eds) O Estuário da Lagoa dos Patos—um século de tranformações. Universidade Federal do Rio Grande, Rio Grande, pp 17–27. (Hydrology and Hydrodynamics In: The Patos Lagoon estuary—a century of transformations).

  19. Vaz AC, Möller OO, Almeida TL (2006) Análise quantitativa da descarga dos rios afluentes da Lagoa dos Patos. Atlântica 28(1):13–23 (Quantitative analysis of the river discharge into the Patos Lagoon estuarine system).

  20. Grimm AM, Ferraz SET, Gomes J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880

    Article  Google Scholar 

  21. Abreu PC, Bergesch M, Proença LA, Garcia CAE, Odebrecht C (2010) Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon estuary, southern Brazil. Estuar Coast 33:554–569

    Article  CAS  Google Scholar 

  22. Odebrecht C, Bergesch M, Rörig LR, Abreu PC (2010) Phytoplankton interannual variability at Cassino Beach, southern Brazil (1992–1997), with emphasis on the surf diatom Asterionellopsis glacialis. Estuar Coasts 33:570–583

    Article  CAS  Google Scholar 

  23. Tozzi HAM, Calliari LJ (2000) Morfodinâmica da Praia do Cassino, RS. Pesq em Geoci 27(1):29–42, Morphodynamics of Cassino Beach, RS

    Google Scholar 

  24. Calliari LJ, Winterwerp JC, Fernandes E, Cuchiara D, Vinzon SB, Sperle M, Holland KT (2009) Fine grain sediment transport and deposition in the Patos Lagoon-Cassino beach sedimentary system. Cont Shelf Res 29:515–529

    Article  Google Scholar 

  25. Stepanauskas R, Laudon H, Jørgensen NOG (2000) High DON bioavailability in boreal streams during a spring flood. Limnol Oceanogr 45(6):1298–1307

    Article  CAS  Google Scholar 

  26. Strome DJ, Miller MC (1978) Photolytic changes in dissolved organic humic substances. Int Ver Theor Angew Limnol 20:1248–1954

    Google Scholar 

  27. Lindell MJ, Granéli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40(1):95–199

    Google Scholar 

  28. UNESCO (1983) Chemical methods for use in marine environmental monitoring (Manual and Guides 12). Intergovernmental Oceanographic Commission, Paris

    Google Scholar 

  29. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd Edition. Fisheries Research Board of Canada, Ottawa. Bulletin 167. 311 pp.

  30. Siripong S, Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 41:1110–1120

    Article  CAS  PubMed  Google Scholar 

  31. Henriques IS, Alves A, Tacão M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf S 68:139–148

    Article  Google Scholar 

  32. van der Gucht KVD, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S et al (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. PNAS 104(51):20404–20409

    Article  PubMed Central  PubMed  Google Scholar 

  33. Janse I, Bok J, Zwart G (2004) A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Meth 57:279–281

    Article  CAS  Google Scholar 

  34. Lehours A-C, Cottrell MT, Dahan O, Kirchman DL, Jeanthon C (2010) Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiol Ecol 74:397–409

    Article  CAS  PubMed  Google Scholar 

  35. Tourlomousis P, Kemsley EK, Ridgway KP, Toscano MJ, Humphrey TJ, Narbad A (2010) PCR-denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large data set. Microb Ecol 59:776–786

    Article  CAS  PubMed  Google Scholar 

  36. Lazar I (2010) Gel Analyzer: <http://www.gelanalyzer.com>.

  37. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. <http://www.R-project.org>.

  38. Ishii S, Kadota K, Senoo K (2009) Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data. J Microbiol Meth 78:344–350

    Article  CAS  Google Scholar 

  39. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57(8):2351–2359

    CAS  Google Scholar 

  40. Sala MM, Pinhassi J, Gasol JM (2006) Estimation of bacterial use of dissolved organic nitrogen compounds in aquatic ecosystems using Biolog plates. Aquat Microb Ecol 42:1–5

    Article  Google Scholar 

  41. Hackett CA, Griffiths BS (1997) Statistical analysis of the time-course of Biolog substrate utilization. J Microbiol Meth 30:63–69

    Article  CAS  Google Scholar 

  42. Hammer O, Harper DAT, Ryan PD (2001) Palaentological Statistics software package for education and data analysis. Palaeontol Electron 4(1):9 pp

    Google Scholar 

  43. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  44. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al. (2011) vegan: community ecology package. R package version 2.0-0. <http://CRAN.R-project.org/package=vegan>.

  45. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-X.

  46. Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62(7):2676–2680

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Cottrel MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48(1):168–178

    Article  Google Scholar 

  48. Yokokawa T, Nagata T, Cottrell MT, Kirchman DL (2004) Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr 49(5):1620–1629

    Article  Google Scholar 

  49. Abreu PC, Biddanda BB, Odebrecht C (1992) Bacterial dynamics of the Patos Lagoon estuary, southern Brazil (32°S, 52°W): relationship with phytoplankton production and suspended material. Estuar Coast Shelf S 35:621–635

    Article  Google Scholar 

  50. Hoch MP, Kirchman DL (1993) Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary. Mar Ecol Prog Ser 98:283–295

    Article  Google Scholar 

  51. Schauer M, Massana R, Pedrós-Alió C (2000) Spatial differences in bacterioplankton composition along the Catalan (NW Mediterranean) assessed by molecular fingerprinting. FEMS Microbiol Ecol 33:51–59

    Article  CAS  PubMed  Google Scholar 

  52. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  53. Abreu PC, Granéli HW, Odebrecht C (1995) Produção fitoplanctônica e bacteriana na região da pluma estuarina da Lagoa dos Patos—RS, Brasil. Atlantica 17:35–52, Phytoplanktonic and bacterial production in the region of the estuarine plume of Patos Lagoon Estuary—RS, Brazil

    Google Scholar 

  54. Windom HL, Niencheski LF, Smith RG Jr (1999) Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos Lagoon (Brazil). Estuar Coast Shelf S 48:113–123

    Article  CAS  Google Scholar 

  55. Thottathil SD, Balachandran KK, Jayalakshmy KV, Gupta GVM, Nair S (2008) Tidal switch on metabolic activity: salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary. Estuar Coast Shelf S 78:665–673

    Article  Google Scholar 

  56. Sala MM, Estrada M, Gasol JM (2006) Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquat Microb Ecol 44:1–9

    Article  Google Scholar 

  57. Smalla K, Wachtendorf U, Heuer H, Liu W-T, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64(4):1220–1225

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Konopka A, Oliver L, Turco RF Jr (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  CAS  PubMed  Google Scholar 

  59. Preston-Mafham J, Body L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles—a critique. FEMS Microbiol Ecol 42:1–14

    CAS  PubMed  Google Scholar 

  60. Alonso C, Gómez-Pereira P, Ramette A, Ortega L, Fichs BM, Amann R (2010) Multilevel analysis of the bacterial diversity along the environmental gradient Río de la Plata—South Atlantic Ocean. Aquat Microb Ecol 61:57–72

    Article  Google Scholar 

  61. Lozupone C, Knight R (2007) Global patterns in bacterial diversity. PNAS 104(27):11436–11440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bosshard PP, Stettler R, Bachofen R (2000) Seasonal and spatial community dynamics in the meromictic Lake Cadagno. Arch Microbiol 174(3):168–174

    Article  CAS  PubMed  Google Scholar 

  64. Sintes E, Witte H, Stodderegger K, Steiner P, Herndl GJ (2012) Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12003

    PubMed Central  PubMed  Google Scholar 

  65. Bradley PB, Sanderson MP, Frischer ME, Brofft J, Booth MG, Kerkhof LJ, Bronk DA (2010) Inorganic and organic nitrogen uptake by phytoplankton and heterotrophic bacteria in the stratified Mid-Atlantic Bight. Estuar Coast Shelf S 88:429–441

    Article  CAS  Google Scholar 

  66. Fulweiler RW, Emery HE, Heiss EM, Berounsky VM (2011) Assessing the role of pH in determining water column nitrification rates in a coastal system. Estuar Coast 34:1095–1102

    Article  CAS  Google Scholar 

  67. Weiss MS, Abele U, Weckesser J, Welte W, Schiltz E, Schulz GE (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630

    Article  CAS  PubMed  Google Scholar 

  68. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65(8):3721–3726

    PubMed Central  PubMed  Google Scholar 

  69. Cottrell MT, Kirchman DL (2004) Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat Microb Ecol 34:139–149

    Article  Google Scholar 

  70. Campbell BJ, Kirchman DL (2012) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 1–11. doi:10.1038/ismej.2012.93.

  71. Crump BC, Peranteau C, Beckingham B, Cornwell JC (2007) Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl Environ Microb 73(21):6802–6810

    Article  CAS  Google Scholar 

  72. Google Inc. (2012) Google Earth (cersion 6.2.2.6613) [software]. Available at: <http://www.google.com/earth/download/ge/agree.html>.

  73. Kahle D, Wickham H (2012) ggmap: a package for spatial visualization with Google Maps and OpenStreetMap. R package version 2.2. <http://CRAN.R-project.org/package=ggmap>.

  74. Becker RA, Wilks AR (2012) Draw geographical maps. R package version 2.2-6. R version by Brownrigg R. Enhancements by Minka TP. <http://CRAN.R-project.org/package=maps>.

Download references

Acknowledgments

The authors would like to thank the Long Term Ecological Research Program PELD Lagoa dos Patos for support during samplings and financial support from the Brazilian agencies CNPq and CAPES. We are also grateful to the suggestions and invaluable comments to the original manuscript made by Dr. Clarisse Odebrecht and Dr. José Henrique Muelbert from the Institute of Oceanography and Pedro Eduardo Almeida da Silva from the College of Medicine of the Federal University of Rio Grande. This paper was also greatly improved by the very thorough and helpful suggestions done by three anonymous reviewers. L.F. Marins and P.C. Abreu are research fellows of the Council for Scientific and Technological Development—CNPq of the Brazil's Ministry of Science, Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ng Haig They.

Rights and permissions

Reprints and permissions

About this article

Cite this article

They, N.H., Ferreira, L.M.H., Marins, L.F. et al. Stability of Bacterial Composition and Activity in Different Salinity Waters in the Dynamic Patos Lagoon Estuary: Evidence from a Lagrangian-Like Approach. Microb Ecol 66, 551–562 (2013). https://doi.org/10.1007/s00248-013-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0259-3

Keywords

Navigation