Skip to main content

Advertisement

Log in

Filamentous Fungi: the Indeterminate Lifestyle and Microbial Ecology

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The filamentous fungi have dynamic and variable hyphal structures within which cytoplasm can be moved, synthesized, and degraded, in response to changes in environmental conditions, resource availability, and resource distribution. Their study has gone through several phases. In the first phase, direct observation was emphasized without undue concern for interior structures or in the presence of cytoplasm. By the mid-1970s, single biochemical proxies (ergosterol, marker fatty acids, chitin derivatives, etc.) were being used increasingly. The use of these surrogate single measurements continues, in spite of their inability to provide information on the physical structure of the filamentous fungi. Molecular approaches also are being used, primarily through the use of bulk nucleic acid extraction and cloning. Because the sources of the nucleic acids used in such studies usually are not known, taxonomic and phylogenetic information derived by this approach cannot be linked to specific fungal structures. Recently, a greater emphasis has been placed on assessing physical aspects of indeterminate fungal growth, involving the assessment of cytoplasm-filled and evacuated (empty) hyphae. Both of these parameters are important for describing filamentous fungal growth and function. The use of phase contrast microscopy and varied general stains, as well as fluorogenic substrates with observation by epifluorescence microscopy, has made it possible to provide estimates of cytoplasm-filled hyphal lengths. Using this approach, it has been possible to evaluate the responses of the indeterminate fungal community to changes in environmental conditions, including soil management. It is now possible to obtain molecular information from individual bacteria and fungal structures (hyphae, spores, fruiting bodies) recovered from environments, making it possible to link individual fungal structures with their taxonomic and phylogenetic information. In addition, this information can be considered in the context of the indeterminate filamentous fungal lifestyle, involving the dynamics of resource allocation to hyphal structural development and synthesis of cytoplasm. Use of this approach should make it possible to gain a greater appreciation of the indeterminate filamentous fungal lifestyle, particularly in the context of microbial ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K Alef (1993) ArticleTitleBestimmung mikrobieller Biomasse im Boden: Eine kritische Betrachtung. Z Pflanzenernähr Bodenk 156 109–114 Occurrence Handle1:CAS:528:DyaK3sXkt1Ohtbg%3D

    CAS  Google Scholar 

  2. JB Anderson LM Kohn (1998) ArticleTitleGenotyping, gene genealogies and genomics bring fungal population genetics above ground. TREE 13 444–448 Occurrence Handle10.1016/S0169-5347(98)01462-1

    Article  Google Scholar 

  3. JPE Anderson KH Domsch (1973) ArticleTitleQuantification of bacterial and fungal contributions to soil respiration. Arch Mikrobiol 93 113–1271 Occurrence Handle1:CAS:528:DyaE2cXht1CisA%3D%3D

    CAS  Google Scholar 

  4. JR Anderson . Westmoreland (1971) ArticleTitleDirect counts of soil organisms using a fluorescent brightener and a europium chelate. Soil Biol Biochem 3 85–87 Occurrence Handle10.1016/0038-0717(71)90033-2

    Article  Google Scholar 

  5. E Bääth (1988) ArticleTitleAutoradiographic determination of metabolically-active fungal hyphae in forest soil. Soil Biol Biochem 20 123–125 Occurrence Handle10.1016/0038-0717(88)90138-1

    Article  Google Scholar 

  6. E Bääth B Söderström (1980) ArticleTitleComparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification. Soil Biol Biochem 12 385–387 Occurrence Handle10.1016/0038-0717(80)90014-0

    Article  Google Scholar 

  7. RD Bardgett RD Lovell PJ Hobbs SC Jarvis (1999) ArticleTitleSeasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31 1021–1030 Occurrence Handle10.1016/S0038-0717(99)00016-4 Occurrence Handle1:CAS:528:DyaK1MXjsFCnu7w%3D

    Article  CAS  Google Scholar 

  8. RD Bardgett E McAlister (1999) ArticleTitleThe measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29 282–290 Occurrence Handle10.1007/s003740050554

    Article  Google Scholar 

  9. MH Beare BR Pohlad DH Wright DC Coleman (1993) ArticleTitleResidue placement and fungicide effects on fungal communities in conventional and no-tillage soils. Soil Sci Soc Am J 57 392–399 Occurrence Handle1:CAS:528:DyaK2cXltlOntA%3D%3D

    CAS  Google Scholar 

  10. MP Berg JP Kniese HA Verhoef (1998) ArticleTitleDynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biol Fertil Soils 26 313–322 Occurrence Handle10.1007/s003740050382

    Article  Google Scholar 

  11. WH Bingle EA Paul (1985) ArticleTitleA method for separating fungal hyphae from soil. Can J Microbiol 32 62–66

    Google Scholar 

  12. CL Boddington EE Bassett I Jakobson JC Dodd (1999) ArticleTitleComparison of techniques for the extraction and quantification of extra-radical mycelium of arbuscular mycorrhizal fungi in soils. Soil Biol Biochem 31 482 Occurrence Handle10.1016/S0038-0717(98)00145-X

    Article  Google Scholar 

  13. J Borneman PW Skroch KM O’Sullivan JA Palus NG Rumhanek JL Jansen J Nienhaus EW Triplett (1996) ArticleTitleMolecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62 1935–1943 Occurrence Handle1:CAS:528:DyaK28XjtlGgsr0%3D Occurrence Handle8787391

    CAS  PubMed  Google Scholar 

  14. TD Brock (1987) The study of microorganisms in situ: progress and problems. M Fletcher TRG Gray JG Jones (Eds) Ecology of Microbial Communities. Cambridge University Press Cambridge, UK 1–17

    Google Scholar 

  15. L Brussaard VM Behan-Pelletier DE Bignell VK Brown W Didden P Folgarait C Fragoso DW Freckman VV Gupta T Hattori DL Hawksworth C Klopatek P Lavelle DW Malloch J Rusek B Söderström JM Tiedje RA Virginia (1997) ArticleTitleBiodiversity and ecosystem functioning in soil. Ambio 26 563–570

    Google Scholar 

  16. MJ Carlisle (1995) The success of the hypha and mycelium. NAR Gow GM Gadd (Eds) The Growing Fungus. Chapman & Hall London 2–19

    Google Scholar 

  17. MH Chantigny DA Angers D Prévost L-P Vézina F-P Chalifour (1997) ArticleTitleSoil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci Soc Am J 61 292–267

    Google Scholar 

  18. MK Chelius EW Triplett (1999) ArticleTitleRapid detection of arbuscular mycorrhizae in roots and soil of an intensively managed turfgrass system by PCR amplification of small subunit rRNA. Mycorrhiza 9 61–64 Occurrence Handle10.1007/s005720050264

    Article  Google Scholar 

  19. M Christensen (1989) ArticleTitleA view of fungal ecology. Mycologia 81 1–12

    Google Scholar 

  20. VP Claassen RJ Zasoski BM Tyler (1996) ArticleTitleA method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA. Mycorrhiza 6 447–450 Occurrence Handle10.1007/s005720050145 Occurrence Handle1:CAS:528:DyaK2sXkvVamsw%3D%3D

    Article  CAS  Google Scholar 

  21. JB Cliff DJ Gaspar PJ Bottomley DD Myrold (2002) ArticleTitleExploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl Environ Microbiol 68 4067–4073 Occurrence Handle10.1128/AEM.68.8.4067-4073.2002 Occurrence Handle1:CAS:528:DC%2BD38XmtVejs7k%3D Occurrence Handle12147508

    Article  CAS  PubMed  Google Scholar 

  22. Conn HJ (1918) The microscopic study of bacteria and fungi in soil. NY Agr Expt Sta, Tech Bull no 64. Jan 1918. [cited in 116, p. 451]

  23. HJ Conn (1922) ArticleTitleMicroscopic method for demonstrating fungi and actinomycetes in soil. Soil Sci 14 149–152

    Google Scholar 

  24. TJ Daniell R Husband AH Fitter JPW Young (2001) ArticleTitleMolecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36 203–209 Occurrence Handle10.1016/S0168-6496(01)00134-9 Occurrence Handle1:CAS:528:DC%2BD3MXltVeis7Y%3D Occurrence Handle11451525

    Article  CAS  PubMed  Google Scholar 

  25. FA Davidson (1998) ArticleTitleModelling the qualitative response of fungal mycelia to heterogeneous environments. J Theoretical Biol 195 281 Occurrence Handle10.1006/jtbi.1998.0739

    Article  Google Scholar 

  26. JW Deacon (1997) Modern Mycology. Blackwell Scientific London 303

    Google Scholar 

  27. BP Degens GP Sparling LK Abbott (1996) ArticleTitleIncreasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Appl Soil Ecol 3 149–159 Occurrence Handle10.1016/0929-1393(95)00074-7

    Article  Google Scholar 

  28. IA Dickie B Up RT Koide (2002) ArticleTitleVertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156 527–535 Occurrence Handle10.1046/j.1469-8137.2002.00535.x Occurrence Handle1:CAS:528:DC%2BD38Xpslemt7g%3D

    Article  CAS  Google Scholar 

  29. KH Domsch TH Beck JPE Anderson B Söderström D Parkinson G Trolldenier (1979) ArticleTitleA comparison of methods for soil microbial population and biomass studies. Zeits Pflanzenernähr Bodenk 142 520–533 Occurrence Handle1:CAS:528:DyaE1MXkvFShsbo%3D

    CAS  Google Scholar 

  30. A Ekblad H Wallander T Näsholm (1998) ArticleTitleChitin and ergosterol combined to measure total and living fungal biomass in ectomyorrhizas. New Phytol 138 143–149 Occurrence Handle10.1046/j.1469-8137.1998.00891.x Occurrence Handle1:CAS:528:DyaK1cXhtlOhuro%3D

    Article  CAS  Google Scholar 

  31. J Eren D Pramer (1966) ArticleTitleApplication of immunofluorescent staining to studies of the ecology of soil microorganisms. Soil Sci 101 39–45

    Google Scholar 

  32. J Eren D Pramer (1968) ArticleTitleUse of a fluorescent brightener as aid to studies of fungistasis and nematophagous fungi in soil. Phytopathology 58 644–646

    Google Scholar 

  33. T Ezawa SE Smith FA Smith (2001) ArticleTitleDifferentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol 149 555–563 Occurrence Handle10.1046/j.1469-8137.2001.00040.x Occurrence Handle1:CAS:528:DC%2BD3MXis1ans7Y%3D

    Article  CAS  Google Scholar 

  34. JC Frankland (1974) ArticleTitleImportance of phase-contrast microscopy for estimation of total fungal biomass by the agar-film technique. Soil Biol Biochem 6 409–410 Occurrence Handle10.1016/0038-0717(74)90051-0

    Article  Google Scholar 

  35. JC Frankland (1975) ArticleTitleEstimation of live fungal biomass. Soil Biol Biochem 7 339–340 Occurrence Handle10.1016/0038-0717(75)90080-2

    Article  Google Scholar 

  36. JC Frankland (1990) ArticleTitleEcological methods of observing and quantifying soil fungi. Trans Mycol Soc Japan 31 89–101

    Google Scholar 

  37. JC Frankland J Dighton L Boddy (1990) Methods for studying fungi in soil and forest litter. R Gigorova JR Norris (Eds) Methods in Microbiology, Vol. 22 Academic Press London 343–404

    Google Scholar 

  38. J Fröhlich H König (1999) ArticleTitleRapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22 157–249

    Google Scholar 

  39. GW Gooday (1995) ArticleTitleThe dynamics of hyphal growth. Mycol Res 99 385–394

    Google Scholar 

  40. DM Griffin (1972) Ecology of Soil Fungi. Syracuse University Press Syracuse 17

    Google Scholar 

  41. DM Griffin (1985) A comparison of the roles of bacteria and fungi. ER Leadbetter JS Poindexter (Eds) Bacteria in Nature, vol 1. Plenum Press New York 221–255

    Google Scholar 

  42. MB Griffith SA Perry (1994) ArticleTitleFungal biomass and leaf litter processing in streams of different water chemistry. Hydrobiologia 294 51–61 Occurrence Handle1:CAS:528:DyaK2MXktl2jtLg%3D

    CAS  Google Scholar 

  43. SK Harney FS Edwards MF Allen (1997) ArticleTitleIdentification of arbuscular mycorrhizal fungi from Artemisia californica using the polymerase chain reaction. Mycologia 89 547–550 Occurrence Handle1:CAS:528:DyaK2sXls1Wlu7w%3D

    CAS  Google Scholar 

  44. A Hasebe S Kanazawa Y Takai (1984) ArticleTitleMicrobial biomass in paddy soil. Soil Sci Plant Nutrit 30 175–187

    Google Scholar 

  45. M Hassar G Corkidi E Galindo C Flores L Serrano-Carrenon (2002) ArticleTitleAccurate and rapid viability assessment of Trichoderma harzianum using fluorescence-based digital image analysis. Biotech Bioeng 80 677–684 Occurrence Handle10.1002/bit.10423

    Article  Google Scholar 

  46. J Hassink G Lebbink JA vanVeen (2001) ArticleTitleMicrobial biomass and activity of a reclaimed-polder soil under a conventional or a reduced-input farming system. Soil Biol Biochem 23 507–513 Occurrence Handle10.1016/0038-0717(91)90107-U

    Article  Google Scholar 

  47. IB Heath (2001) Bridging the divide: cytoskeleton-plasma membrane-cell wall interactions in growth and development. RJ Howard NAR Gow (Eds) The Mycota. VIII. Biology of the Fungal Cell. Springer-Verlag Berlin 201–223

    Google Scholar 

  48. IB Heath G Steinberg (1999) ArticleTitleMechanisms of hyphal tip growth tube dwelling amoebae revisited. Fungal Genet Biol 28 70–93 Occurrence Handle10.1006/fgbi.1999.1168

    Article  Google Scholar 

  49. PR Hirsch (1972) ArticleTitleNeue Methoden zur Beobachtung und Isolierung ungewöhnlicher oder wenig bekannter Wasserbakterien. Zeitsch Allg Mikrobiol 12 203–218 Occurrence Handle1:STN:280:CSyD3cjns1w%3D

    CAS  Google Scholar 

  50. EA Holland DC Coleman (1987) ArticleTitleLitter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68 425–433

    Google Scholar 

  51. ER Ingham DC Coleman (1984) ArticleTitleEffects of streptomycin, cycloheximide, fungizone, captan, carbofurane, cygon and PCNB on soil microorganisms. Microb Ecol 10 345–358 Occurrence Handle1:CAS:528:DyaL2MXnsFGqsQ%3D%3D

    CAS  Google Scholar 

  52. ER Ingham DA Klein (1982) ArticleTitleRelationship between fluorescein diacetate-stained hyphae and oxygen utilization, glucose utilization, and biomass of submerged fungal batch cultures. Appl Environ Microbiol 44 363–370 Occurrence Handle1:CAS:528:DyaL38Xlt1eltrc%3D Occurrence Handle7125653

    CAS  PubMed  Google Scholar 

  53. ER Ingham DA Klein (1984) ArticleTitleSoil fungi: relationships between hyphal activity and staining with fluorescein diacetate. Soil Biol Biochem 16 273–278 Occurrence Handle10.1016/0038-0717(84)90014-2 Occurrence Handle1:CAS:528:DyaL2cXls1Krt7o%3D

    Article  CAS  Google Scholar 

  54. AG Jarstfer DM Sylvia (2002) Isolation, culture, and detection of arbuscular mycorrhizal fungi. CJ Hurst RL Crawford GR Knudsen MJ McInerney LD Stetzenbach (Eds) Manual of Environmental Microbiology. ASM Press Washington, DC 535–542

    Google Scholar 

  55. DS Jenkinson JN Ladd (1981) Microbial biomass in soil: measurement and turnover. EA Paul JN Ladd (Eds) Soil Biochemistry. Marcel Dekker New York 415–471

    Google Scholar 

  56. KI Johnstone (1969) ArticleTitleThe isolation and cultivation of single organisms. Methods Microbiol 1 455–471

    Google Scholar 

  57. PCT Jones JE Mollison (1948) ArticleTitleA technique for the quantitative estimation of soil microorganisms. J Gen Microbiol 2 54–69 Occurrence Handle1:CAS:528:DyaH1cXjtVCntA%3D%3D

    CAS  Google Scholar 

  58. A Kjøller S Struwe (1982) ArticleTitleMicrofungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39 391–422

    Google Scholar 

  59. DA Klein BA Frederick EF Redente (1989) ArticleTitleFertilizer effects on microbial communities and organic matter in the rhizosphere of Sitanion hystrix and Agropyron smithii. Arid Soil Res Rehab 3 397–404

    Google Scholar 

  60. DA Klein T McLendon MW Paschke EF Redente (1995) ArticleTitleSaprophytic fungal–bacterial growth pattern variations in successional communities of a semi-arid steppe ecosystem. Biol Fertil Soils 19 253–256

    Google Scholar 

  61. DA Klein MW Paschke (2000) ArticleTitleA soil microbial community structural-functional index: the microscopy-based Total/Active/Active/Fungal Bacterial (TA/AFB) biovolumes ratio. Appl Soil Ecol 14 257–278 Occurrence Handle10.1016/S0929-1393(00)00061-5

    Article  Google Scholar 

  62. DA Klein MW Paschke EF Redente (1998) ArticleTitleAssessment of fungal–bacterial development in a successional shortgrass steppe by direct integration of chloroform-fumigation extraction (FE) and microscopically derived data. Soil Biol Biochem 30 573–581 Occurrence Handle10.1016/S0038-0717(97)00171-5 Occurrence Handle1:CAS:528:DyaK1cXjtlyqt7g%3D

    Article  CAS  Google Scholar 

  63. JL Kough RG Linderman (1986) ArticleTitleMonitoring extra-matrical hyphae of a vesicular–arbuscular mycorrhizal fungus with an immunofluorescence assay and the soil aggregation technique. Soil Biol Biochem 18 309–313 Occurrence Handle10.1016/0038-0717(86)90066-0

    Article  Google Scholar 

  64. WL Kubiëna (1938) Micropedology. Collegiate Press Ames, IA

    Google Scholar 

  65. HK Lee JP Tewari TK Turkington (2001) ArticleTitleA PCR-based assay to detect Rhynchosporium secalis, in barley seed. Plant Dis 85 220–225 Occurrence Handle1:CAS:528:DC%2BD3MXhtVOisLo%3D

    CAS  Google Scholar 

  66. L Lekkerkerk H Lundkvist GI Ågren G Ekbohm E Bosatta (1990) ArticleTitleDecomposition of heterogeneous substrates; an experimental investigation of a hypothesis on substrate and microbial properties. Soil Biol Biochem 22 161–167 Occurrence Handle10.1016/0038-0717(90)90081-A Occurrence Handle1:CAS:528:DyaK3cXktl2gtLo%3D

    Article  CAS  Google Scholar 

  67. Q Lin PC Brookes (1996) ArticleTitleComparison of methods to measure microbial biomass in unamended, ryegrass-amended and fumigated soils. Soil Biol Biochem 28 939 Occurrence Handle10.1016/0038-0717(96)00058-2

    Article  Google Scholar 

  68. DJ Lodge (1987) ArticleTitleNutrient concentrations, percentage moisture and density of field-collected fungal mycelia. Soil Biol Biochem 19 727–733 Occurrence Handle10.1016/0038-0717(87)90055-1

    Article  Google Scholar 

  69. DJ Lodge ER Ingham (1991) ArticleTitleA comparison of agar film techniques for estimating fungal biovolumes in litter and soil. Ag Ecosyst Environ 34 131–144 Occurrence Handle10.1016/0167-8809(91)90101-3

    Article  Google Scholar 

  70. F Martin-Laurent L Philoppot S Hallet R Chaussod JC Germon G Soulas G Catroux (2001) ArticleTitleDNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67 2354–2359 Occurrence Handle10.1128/AEM.67.5.2354-2359.2001 Occurrence Handle1:CAS:528:DC%2BD3MXjtlGmsLg%3D Occurrence Handle11319122

    Article  CAS  PubMed  Google Scholar 

  71. TP McGonigle MH Miller DG Evans GL Fairchild JA Swan (1990) ArticleTitleA new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115 495–496

    Google Scholar 

  72. TP McGonigle MH Miller (1996) ArticleTitleDevelopment of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28 263–269 Occurrence Handle10.1016/0038-0717(95)00129-8 Occurrence Handle1:CAS:528:DyaK28XhsFaqtrw%3D

    Article  CAS  Google Scholar 

  73. RA Merckx JK Martin (1987) ArticleTitleExtraction of microbial biomass components from rhizosphere soils. Soil Biol Biochem 19 371–376 Occurrence Handle10.1016/0038-0717(87)90025-3 Occurrence Handle1:CAS:528:DyaL2sXlsFegtLs%3D

    Article  CAS  Google Scholar 

  74. RH Miller (1990) Soil microbiological inputs for sustainable agricultural systems. CA Edwards R Lal P Madden RH Miller G House (Eds) Sustainable Agricultural Systems. Soil and Water Conservation Society. Ankeny IA/St. Lucie Press Boca Raton, FL 614–623

    Google Scholar 

  75. M Miller A Palojärvi A Rangger M Reeslev A Kjøller (1998) ArticleTitleThe use of fluorogenic substrates to measure fungal presence in and activity in soil. Appl Environ Microbiol 64 613–617 Occurrence Handle1:CAS:528:DyaK1cXpsVSqsQ%3D%3D Occurrence Handle9464399

    CAS  PubMed  Google Scholar 

  76. CE Morris M Bardin O Berge P Fey-Klett N Fromin H Girardin M-H Guinebretière P Lebaron JM Thiéry M Troussellier (2002) ArticleTitleMicrobial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microb Mol Biol Rev 66 592–616 Occurrence Handle10.1128/MMBR.66.4.592-616.2002

    Article  Google Scholar 

  77. SY Newell RD Fallon JD Miller (1986) Measuring fungal biomass dynamics in standing-dead leaves of a saltmarsh vascular plant. DT Moss (Eds) The Biology of Marine Fungi. Cambridge University Press New York 19–25

    Google Scholar 

  78. SY Newell TL Arsuffi HJ Fallowfield (1988) ArticleTitleFundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54 1876–1879 Occurrence Handle1:CAS:528:DyaL1cXkvV2isr8%3D

    CAS  Google Scholar 

  79. SY Newell (1992) Estimating fungal biomass and productivity in decomposing litter. GC Carroll DT Wicklow (Eds) The Fungal Community. Its Organization and Role in the Ecosystem. Marcel Dekker New York 521–561

    Google Scholar 

  80. SY Newell (2001) ArticleTitleFungal biomass and productivity. Methods Microbiol 30 357–372 Occurrence Handle10.1016/S0580-9517(01)30053-3 Occurrence Handle1:CAS:528:DC%2BD3MXktl2ks78%3D

    Article  CAS  Google Scholar 

  81. DP Nicholas D Parkinson (1967) ArticleTitleA comparison of methods for assessing the amount of fungal mycelium in soil samples. Pedobiologia 7 23–41

    Google Scholar 

  82. LO Nilsson H Wallander (2003) ArticleTitleProduction of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158 409–416

    Google Scholar 

  83. JM Norton MK Firestone (1991) ArticleTitleMetabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings. Appl Environ Microbiol 57 1161–1167

    Google Scholar 

  84. FCW Olson (1950) ArticleTitleQuantitative estimates of filamentous algae. Trans Am Microscop Soc 69 272–279

    Google Scholar 

  85. S Olsson BS Hansson (1995) ArticleTitleAction potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82 30–31 Occurrence Handle10.1007/s001140050135 Occurrence Handle1:CAS:528:DyaK2MXktFSisL0%3D

    Article  CAS  Google Scholar 

  86. S Olsson (2001) Colonial growth of fungi. RJ Howard NAR Gow (Eds) The Mycota. VIII. Biology of the Fungal Cell. Springer-Verlag Heidelberg 125–141

    Google Scholar 

  87. NR Pace DA Stahl DJ Lane GJ Olsen (1986) ArticleTitleThe analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9 1–55 Occurrence Handle1:CAS:528:DyaL28XltFWmsL8%3D

    CAS  Google Scholar 

  88. CE Pankhurst K Ophel-keller BM Doube VVSR Gupta (1996) ArticleTitleBiodiversity of soil microbial communities in agricultural systems. Biodiversity Cons 5 301–393

    Google Scholar 

  89. K Paustian (1985) Influence of fungal growth pattern on decomposition and nitrogen mineralization in a model system. AH Fitter D Atkinson DJ Read MB Usher (Eds) Ecological Interactions in Soil: Plants, Microbes and Animals. Brit Ecol Soc Sp Pub 4. Blackwell Scientific Oxford 159–174

    Google Scholar 

  90. K Paustian J Schnürer (1987) ArticleTitleFungal growth response to carbon and nitrogen limitation: a theoretical model. Soil Biol Biochem 19 613–620 Occurrence Handle10.1016/0038-0717(87)90107-6 Occurrence Handle1:CAS:528:DyaL2sXlsFWjsro%3D

    Article  CAS  Google Scholar 

  91. JI Prosser (1995) Kinetics of filamentous growth and branching. NAR Gow CM Gadd (Eds) The Growing Fungus. Chapman & Hall London 301–318

    Google Scholar 

  92. M Ramsdale ADM Rayner (1997) Ecological genetics. DT Wicklow BE Söderström (Eds) The Mycota IV. Springer-Verlag New York 15–30

    Google Scholar 

  93. AJR Rayner JD Beeching JC Crowe ZR Watkins (1999) Defining individual fungal boundaries. JJ Worrall (Eds) Structure and Dynamics of Fungal Populations. Kluwer Academic Norwell, MA 19–42

    Google Scholar 

  94. ADM Rayner L Boddy (1998) Terrestrial fungal communities. RS Burlage R Atlas D Stahl G Geesey G Sayler (Eds) Techniques in Microbial Ecology. Oxford University Press New York 163–202

    Google Scholar 

  95. ADM Rayner GS Griffith AM Ainsworth (1994) Mycelial interconnectedness. NAR Gow GM Gadd (Eds) The growing fungus. Chapman & Hall London 21–40

    Google Scholar 

  96. CH Robinson PA Wookey (1997) Microbial ecology, decomposition and nutrient cycling. M Marquiss SJ Woodin (Eds) Ecology of Arctic Environments. Spec Pub No 13, Brit Ecol Soc. Blackwell Scientific Oxford 41–63

    Google Scholar 

  97. A Schubert C Marzachi M Mazzitelli MC Cravero P Bonfante-Fasolo (1987) ArticleTitleDevelopment of total and viable extraradical mycelium in the vesicular–arbuscular mycorrhizal fungus Glomus clarum Nicol. & Schenck. New Phytol 107 183–190

    Google Scholar 

  98. LM Seitz HE Mohr R Burroughs DB Sauer (1977) ArticleTitleErgosterol as an indicator of fungal invasion in grains. Cereal Chem 54 1207–1217 Occurrence Handle1:CAS:528:DyaE1cXos1ajsw%3D%3D

    CAS  Google Scholar 

  99. JA Shapiro M Dworkin (1997) Bacteria as Multicellular Organisms. Oxford University Press New York

    Google Scholar 

  100. AK Sharma BN Johri (2002) Physiology of nutrient uptake by arbuscular mycorrhizal fungi. AK Sharma BN Johri (Eds) Arbuscular Mycorrhizae. Interactions in Plants, Rhizosphere and Soils. Science Publishers Enfield, NH 279–308

    Google Scholar 

  101. WV Sigler S Crivii J Zeyer (2002) ArticleTitleBacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44 306–316 Occurrence Handle10.1007/s00248-002-2025-9 Occurrence Handle1:STN:280:DC%2BD38jhtFOltg%3D%3D Occurrence Handle12399899

    Article  CAS  PubMed  Google Scholar 

  102. L Simon M Lalonde TD Bruns (1992) ArticleTitleSpecific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58 291–295 Occurrence Handle1:CAS:528:DyaK38Xkt1Wgsb0%3D Occurrence Handle1339260

    CAS  PubMed  Google Scholar 

  103. E Smit P Leeflang B Glandorf JD vanElsas K Wernars (1999) ArticleTitleAnalysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient electrophoresis. Appl Environ Microbiol 65 2614–2621 Occurrence Handle1:CAS:528:DyaK1MXjs12gt7w%3D Occurrence Handle10347051

    CAS  PubMed  Google Scholar 

  104. JL Smith EA Paul (1990) The significance of soil microbial biomass estimations. JM Bollag G Stotzky (Eds) Soil Biochemistry, 6th ed. Marcel Dekker New York 357–396

    Google Scholar 

  105. BE Söderström (1977) ArticleTitleVital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9 59–63 Occurrence Handle10.1016/0038-0717(77)90061-X

    Article  Google Scholar 

  106. BE Söderström (1979) ArticleTitleSome problems in assessing the fluorescein diacetate-active fungal biomass in the soil. Soil Biol Biochem 11 147–148 Occurrence Handle10.1016/0038-0717(79)90092-0

    Article  Google Scholar 

  107. JT Staley A-L Reysenbach (2001) Biodiversity of Microbial Life. Wiley-Liss, Inc New York

    Google Scholar 

  108. K Suberkropp TL Arsuffi JPE Anderson (1974) ArticleTitleComparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl Environ Microbiol 46 237–244

    Google Scholar 

  109. K Suberkropp MJ Klug (1974) ArticleTitleDecomposition of deciduous leaf litter in a woodland stream. I. A scanning electron microscopic study. Microb Ecol 1 96–103

    Google Scholar 

  110. DM Sylvia (1992) ArticleTitleQuantification of external hyphae of vesicular-arbuscular mycorrhizal fungi. Methods Microbiol 24 53–65

    Google Scholar 

  111. MJ Taylor JU Ponika DA Sherris EB Kern TA Gaffey G Kephart H Kita (2002) ArticleTitleDetection of fungal organisms in eocinophilic mucin using a fluorescein-labeled chitin-specific binding protein. Otolaryn-Head Neck Surg 127 377–383 Occurrence Handle10.1067/mhn.2002.128896

    Article  Google Scholar 

  112. G Thorne (1997) The fungi in soil. JD vanElsas JT Trevors EMH Wellington (Eds) Modern Soil Microbiology. Marcel Dekker New York 63–127

    Google Scholar 

  113. IC Tommerup (1992) ArticleTitleMethods for the study of the population biology of vesicular-arbuscular mycorrhizal fungi. Methods Microbiol 24 23–51

    Google Scholar 

  114. KK Treseder MF Allen (2000) ArticleTitleBlack boxes and missing sinks: fungi in global change research. Mycol Res 104 1282–1283 Occurrence Handle10.1017/S0953756200229778

    Article  Google Scholar 

  115. SM Turner EI Newman (1984) ArticleTitleFungal abundance on Lolium perenne roots: influence of nitrogen and phosphorous. Trans Brit Mycol Soc 82 315–322 Occurrence Handle1:CAS:528:DyaL2cXktVKjtrg%3D

    CAS  Google Scholar 

  116. S Visser CL Griffiths D Parkinson (1983) ArticleTitleEffects of surface mining on the microbiology of a prairie site in Alberta, Canada. Can J Soil Sci 63 177–189

    Google Scholar 

  117. M Vosatka (2001) ArticleTitleA future role for the use of arbuscular mycorrhizal fungi in soil remediation: a chance for small-medium enterprises? Minerva Biotechnologica 13 69–72

    Google Scholar 

  118. SA Waksman (1916) ArticleTitleDo fungi live and produce mycelium in the soil? Science NS 44 320–322

    Google Scholar 

  119. SA Waksman (1922) ArticleTitleThe growth of fungi in the soil. Soil Sci 14 153–157 Occurrence Handle1:CAS:528:DyaB3sXhtVKhtA%3D%3D

    CAS  Google Scholar 

  120. JH Warcup (1955) ArticleTitleOn the origin of colonies of fungi developing on soil dilution plates. Trans Brit Mycol Soc 38 298–301

    Google Scholar 

  121. JH Warcup (1957) ArticleTitleStudies on the occurrence and activity of fungi in a wheat-field soil. Trans Brit Mycol Soc 40 237–262

    Google Scholar 

  122. JH Warcup (1967) Fungi in soil. A Burges F Raw (Eds) Soil Biology. Academic Press New York 51–110

    Google Scholar 

  123. AW West WD Grant GP Sparling (1987) ArticleTitleUse of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol Biochem 19 607–612 Occurrence Handle10.1016/0038-0717(87)90106-4 Occurrence Handle1:CAS:528:DyaL2sXlsFegur0%3D

    Article  CAS  Google Scholar 

  124. DC White DC Davis JS Nickels JC King RJ Bobbie (1979) ArticleTitleDetermination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40 51–62

    Google Scholar 

  125. S Winogradsky (1949) Microbiologie du Sol. Masson et Cie Paris 428–440

    Google Scholar 

  126. J Worrall (1999) Brief introduction to fungi. JJ Worrall (Eds) Structure and Dynamics of Fungal Populations. Kluwer Academic Boston 1–18

    Google Scholar 

  127. S Wright JB Morton (1989) ArticleTitleDetection of vesicular–arbuscular mycorrhizal fungus colonization of roots by using a dot-immunoblot assay. Appl Environ Microbiol 55 761–763

    Google Scholar 

  128. JC Zak SC Rabatin (1997) Organization and description of fungal communities. DT Wicklow BE Söderström (Eds) The Mycota IV. Springer-Verlag New York 33–46

    Google Scholar 

  129. JC Zak S Visser (1996) ArticleTitleAn appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodiversity Cons 5 169–183

    Google Scholar 

  130. S Zeppa L Vallorani L Potenza F Bernardini B Pieretti M Guescini G Giomaro V Stocchi (2000) ArticleTitleEstimation of fungal biomass and transcript levels in Tilia platyphyllos–Tuber borchii ectomycorrhizae. FEMS Microbiol Ecol 188 119–124 Occurrence Handle10.1016/S0378-1097(00)00223-8 Occurrence Handle1:CAS:528:DC%2BD3cXksFGisL8%3D

    Article  CAS  Google Scholar 

  131. Q Zhang JC Zak (1998) ArticleTitlePotential physiological activities of fungi and bacteria in relation to plant litter decomposition along a gap size gradient in a natural subtropical forest. Microb Ecol 35 172–179 Occurrence Handle10.1007/s002489900071 Occurrence Handle9541553

    Article  PubMed  Google Scholar 

  132. ZH Zhou M Miwa Y Matsuda T Hogetsu (2001) ArticleTitleSpatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. J Plant Res 114 179–185

    Google Scholar 

  133. G Zhou WZ Whong T Ong B Chen (2000) ArticleTitleDevelopment of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Mol Cell Probes 14 339–348 Occurrence Handle10.1006/mcpr.2000.0324 Occurrence Handle1:CAS:528:DC%2BD3cXot1Klsbg%3D Occurrence Handle11090263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out with support from the USDA-NRICCP under project 93-37101-8601, and by USDOD-SERDP project CS-1145. The assistance of Darci Burchers with laboratory analyses, of Mark Lombard and Paul Swartzinski with field sampling, and of Katy Carl with the rendering of Fig. 1 is deeply appreciated. The authors thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Paschke, M. Filamentous Fungi: the Indeterminate Lifestyle and Microbial Ecology . Microb Ecol 47, 224–235 (2004). https://doi.org/10.1007/s00248-003-1037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-1037-4

Keywords

Navigation