Skip to main content
Log in

Serum Alkaline Phosphatase Reflects Post-Fontan Hemodynamics in Children

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Although survivors of Fontan palliation for a single ventricle are known to have lower cardiac index than patients with two-ventricle surgical reconstructions, it is unclear whether two frequently observed sequelae, short stature and protein-losing enteropathy (PLE), have hemodynamic origins. A serum marker that reflects hemodynamic status would be a tremendous asset in the long-term management of children with these sequelae. The authors recently noted severely reduced total alkaline phosphatase (TALP) levels in two children with early-onset PLE after Fontan operations, both of whom had low cardiac output at cardiac catheterization. Catheter-based or surgical interventions that rapidly increased cardiac output in these two patients resulted not only in relief of PLE but also in a prompt TALP rise. To examine whether the apparent correlation of low TALP with impaired cardiac output also is seen in Fontan patients without PLE, this study retrospectively examined the TALP data from two other Fontan patients who underwent cardiac catheterization specifically to assess the potential benefit of vasodilator therapy. The TALP levels were abnormally low in both cases but increased after uptitration of angiotensin-converting enzyme inhibition. Serum TALP activity, an indicator of osteoblastic function particularly in preadolescence, may be a marker of low cardiac output after a Fontan operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adachi H, Strauss W, Ochi H, Wagner HN Jr (1976) The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ Res 39:314–319

    PubMed  CAS  Google Scholar 

  2. Arnaud SB, Powell MR, Vernikos-Danellis J, Buchanan P (1988) Bone mineral and body composition after 30-day head down tilt bed rest. J Bone Miner Res 3:S119

    Google Scholar 

  3. Bar-Cohen Y, Perry SB, Keane JF, Lock JE (2005) Use of stents to maintain atrial defects and Fontan fenestrations in congenital heart disease. J Intervent Cardiol 18:111–118

    Article  PubMed  Google Scholar 

  4. Berger J, Garattini E, Hua J-C, Udenfried S (1987) Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci USA 84:695–698

    Article  PubMed  CAS  Google Scholar 

  5. Brun-Heath I, Taillandier A, Serre J-L, Mornet E (2005) Characterization of 11 novel mutations in the tissue nonspecific alkaline phosphatase gene responsible for hypophosphatasia and genotype-phenotype correlations. Mol Genet Metab 84:274–277

    Google Scholar 

  6. Cohen MI, Bush DM, Ferry RJ Jr et al (2000) Somatic growth failure after the Fontan operation. Cardiol Young 10:447–457

    Article  PubMed  CAS  Google Scholar 

  7. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  PubMed  CAS  Google Scholar 

  8. Griffith JF, Yeung DKW, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  9. Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  10. Gross PM, Heistad DD, Marcus ML (1979) Neurohumoral regulation of blood flow to bones and marrow. Am J Physiol Heart Circ Physiol 237:H440–H448

    CAS  Google Scholar 

  11. Henthorn PS, Raducha M, Kadesch T et al (1988) Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem 263:12011–12019

    PubMed  CAS  Google Scholar 

  12. Hillsley MV, Frangos JA (1994) Review: bone tissue engineering: role of interstitial fluid flow. Biotech Bioeng 43:573–581

    Article  CAS  Google Scholar 

  13. Jacobs ML, Schneider DJ, Pourmoghadam KK et al (2004) Total cavopulmonary connection to one lung. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:72–79

    Article  PubMed  Google Scholar 

  14. Janes JM, Musgrove JE (1950) Effect of arteriovenous fistula on growth of bone: an experimental study. Surg Clin North Am 30:1191–1200

    PubMed  CAS  Google Scholar 

  15. Janes JM, Jennings WK (1961) Effect of induced arteriovenous fistula on leg length: 10-year observations. Proc Staff Meetings Mayo Clinic 36:1–11

    CAS  Google Scholar 

  16. Joiner TA, Foster C, Shope T (2000) The many faces of vitamin D deficiency rickets. Ped Rev 21:296–302

    Article  CAS  Google Scholar 

  17. Kaulitz R, Luhmer I, Bergmann F et al (1997) Sequelae after modified Fontan operation: postoperative haemodynamic data and organ function. Heart 78:154–159

    PubMed  CAS  Google Scholar 

  18. Kreutzer J, Lock JE, Jonas RA, Keane JF (1997) Transcatheter fenestration dilation and/or creation in postoperative Fontan patients. Am J Cardiol 79:228–232

    Article  PubMed  CAS  Google Scholar 

  19. Leupin O, Kramer I, Collette NM et al (2007) Control of the SOST bone enhancer by PTH using Mef2 transcription factors. J Bone Miner Res 22:1957–1967

    Article  PubMed  CAS  Google Scholar 

  20. Malone AM, Anderson CT, Tummala P et al (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330 (erratum in Proc Natl Acad Sci U S A. [2008] 105:825)

    Article  PubMed  CAS  Google Scholar 

  21. Millan JL (1986) Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem 261:3112–3115

    PubMed  CAS  Google Scholar 

  22. Qin Y-X, Lin W, Rubin C (2002) The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng 30:693–702

    Article  PubMed  Google Scholar 

  23. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358

    PubMed  CAS  Google Scholar 

  24. Rauchenzauner M, Schmid A, Heinz-Erian P et al (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449

    Article  PubMed  CAS  Google Scholar 

  25. Redington A (2006) The physiology of the Fontan circulation. Progr Pediatr Cardiol 22:179–186

    Article  Google Scholar 

  26. Ringel RE, Peddy SB (2003) Effect of high-dose spironolactone on protein-losing enteropathy in patients with Fontan palliation of complex congenital heart disease. Am J Cardiol 91:1031–1032

    Article  PubMed  CAS  Google Scholar 

  27. Ryerson L, Goldberg C, Rosenthal A, Armstrong A (2008) Usefulness of heparin therapy in protein-losing enteropathy associated with single-ventricle palliation. Am J Cardiol 101:248–251

    Article  PubMed  CAS  Google Scholar 

  28. Schonau E, Rauch F (2003) Biochemical markers of bone metabolism. In: Glorieux F (ed) Pediatric bone: biology and diseases. Academic Press, San Diego, pp 339–357

    Google Scholar 

  29. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteopor Int 11:281–294

    Article  CAS  Google Scholar 

  30. Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 8:875–878

    PubMed  CAS  Google Scholar 

  31. Van Coeverden S, Netelenbos J, De Ridder C et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57:107–116

    Article  Google Scholar 

  32. Van Hoof VO, Hoylaerts MF, Geryl H et al (1990) Age and sex distribution of alkaline phosphatase isoenzymes by agarose electrophoresis. Clin Chem 36:875–878

    PubMed  Google Scholar 

  33. Vanderhoeft PJ, Kelly PJ, Janes JM, Peterson LFA (1963) Growth and structure of bone distal to an arteriovenous fistula: quantitative analysis of tetracycline-induced transverse growth patterns. J Bone Joint Surg 45B:582–596

    Google Scholar 

  34. Weiss MJ, Henthorn PS, Lafferty MA et al (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83:7182–7186

    Article  PubMed  CAS  Google Scholar 

  35. Whitfield JF (2003) Primary cilium: is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem 89:233–237

    Article  PubMed  CAS  Google Scholar 

  36. Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 10:187–217

    Article  PubMed  CAS  Google Scholar 

  37. Wilson J, Russell J, Williams W, Benson L (2005) Fenestration of the Fontan circuit as treatment for plastic bronchitis. Pediatr Cardiol 26:717–719

    Article  PubMed  CAS  Google Scholar 

  38. Witzel C, Sreeram N, Coburger S et al (2006) Outcome of muscle and bone development in congenital heart disease. Eur J Pediatr 165:168–174

    Article  PubMed  Google Scholar 

  39. Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin J. Chin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, A.J., Stephens, P., Goldmuntz, E. et al. Serum Alkaline Phosphatase Reflects Post-Fontan Hemodynamics in Children. Pediatr Cardiol 30, 138–145 (2009). https://doi.org/10.1007/s00246-008-9292-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-008-9292-2

Keywords

Navigation