Skip to main content

Advertisement

Log in

Preliminary Analysis of Polycyclic Aromatic Hydrocarbons in Air Particles (PM10) in Amritsar, India: Sources, Apportionment, and Possible Risk Implications to Humans

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Preliminary analysis was performed to assess human health risks of exposure to 16 polycyclic aromatic hydrocarbons (PAHs) by way of inhalation by children and adults living in urban area of Amritsar, Punjab, India. In particular, the United States Environmental Protection Agency’s (USEPA’s) 16 priority PAH compounds were analyzed in air particulate matter (PM10) from different geographical locations by high-volume air sampler. Sum concentrations of PAHs (37–274 ng m−3) were comparable with those of other cities in India as well many cities on a global scale. Pyrene, naphthalene, acenaphthene, acenaphthylene, fluoranthene, fluorene, and dibenzo(a,h)anthracene accounted for >80 % of ∑16PAH concentrations. Furthermore, the contribution of seven carcinogenic PAHs accounted for 12 % of ∑16PAHs. The estimated carcinogenicity of PAHs in terms of benzo(a)pyrene toxic equivalency (BaPTEQ) was assessed and confirmed that dibenzo(a,h)anthracene was the dominant PAH contributor (88.7 %) followed by benzo(a)pyrene (6.67 %). Homolog pattern and diagnostic ratios of PAHs suggested that mixed pyrogenic sources—including biomass burning, coal combustion, and petrogenic sources, such as vehicular emissions—are dominant PAH sources in Amritsar. Health risk of adults and children by way of PAHs was assessed by estimating the lifetime average daily dose (LADD) and corresponding incremental lifetime cancer risk (ILCR) using USEPA guidelines. The assessed cancer risk (ILCR) was found to be within the acceptable range (10−6–10−4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abba EJ, Unnikrishnan S, Kumar R, Yeole B, Chowdhury Z (2012) Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int J Environ Health Res 22:134–149

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1990) Polynuclear aromatic hydrocarbon (PAH) toxicity. Case studies in environmental health medicine #13. United States Department of Health and Human Services

  • Akyuz M, Cabuk H (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 170:13–21

    Article  Google Scholar 

  • Asante-Duah K (2002) Public health risk assessment for human exposure to chemicals. Kluwer, Dordrecht

    Book  Google Scholar 

  • ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). United States Department of Health and Human Services, Public Health Service. Atlanta, GA. http://www.atdsr.cdc.gov/toxpro.les/phs69. Accessed March 2013

  • Bai Z, Hu Y, Yu H, Wu N, You Y (2009) Quantitative health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons on citizens in Tianjin, China. Bull Environ Contam Toxicol 83:151–154

    Article  CAS  Google Scholar 

  • Bosetti C, Boffetta P, La Vecchia C (2007) Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: A quantitative review to 2005. Ann Oncol 18:431–446

    Article  CAS  Google Scholar 

  • Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488

    Article  CAS  Google Scholar 

  • Callen MS, de la Cruz MT, Lopez JM, Murillo R, Navarro MV, Mastral AM (2008) Long-range atmospheric transport and local pollution sources on PAH concentrations in a South European urban area. Fulfilling of the European directive. Water Air Soil Pollut 190:271–285

    Article  CAS  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Chen S, Liao C (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123

    Article  CAS  Google Scholar 

  • Chen YG, Sheng GY, Bi XH (2005) Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ Sci Technol 39:1861–1867

    Article  CAS  Google Scholar 

  • Chen Y, Feng Y, Xiong S, Liu D, Wang G, Sheng G, Fu J (2011) Polycyclic aromatic hydrocarbons in the atmosphere of Shanghai, China. Environ Monit Assess 172:235–247

    Article  CAS  Google Scholar 

  • Cheng Y, Ho KF, Wu WJ, Ho SSH, Lee SC, Huang Y et al (2012) Real-time characterization of particle-bound polycyclic aromatic hydrocarbons at a heavily trafficked roadside site. Aerosol Air Qual Res 12:1181–1188

    CAS  Google Scholar 

  • Chiang KC, Chio CP, Chiang YH, Liao CM (2009) Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater 166:676–685

    Article  CAS  Google Scholar 

  • Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE et al (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environ Sci Technol 34:4635–4640

    Article  CAS  Google Scholar 

  • Ding X, Wang XM, Xie ZQ, Xiang CH, Mai BX, Sun LG (2007) Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: spatial distribution and source identification. Atmos Environ 47:2061–2072

    Article  Google Scholar 

  • European Commission (2004) European Commission directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and PAH in ambient air. Off J Eur Union 26:3–16

    Google Scholar 

  • Fang GC, Wu YS, Chen MH, Ho TT, Huang SH, Rau JJY (2004) Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmos Environ 38:3385–3391

    Article  CAS  Google Scholar 

  • Furuuchi M, Murase T, Tsukawaki S, Hang P, Sieng S, Hata M (2007) Characteristics of ambient particle-bound polycyclic aromatic hydrocarbons in the Angkor monument area of Cambodia. Aerosol Air Qual Res 7:221–238

    CAS  Google Scholar 

  • Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E (2003) Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as marker of DNA damage and infertility. Mutat Res 535:155–160

    Article  CAS  Google Scholar 

  • Guo Y, Senthilkumar K, Alomirah H, Moon HB, Minh TB, Mohd MA et al (2013) Concentrations and profiles of urinary polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in several Asian countries. Environ Sci Technol 47(6):2932–2938

    Article  CAS  Google Scholar 

  • Gupta S, Kumar K, Srivastava A, Srivastava A, Jain VK (2011) Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India. Sci Total Environ 409:4674–4680

    Article  CAS  Google Scholar 

  • Hassan SK, Khoder MI (2012) Gas-particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environ Monit Assess 184:3593–3612

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2006) Polycyclic aromatic hydrocarbons, IARC monogaraph 92, Lyone, France. http://monographs.iarc.fr/ENG/Meetings/92-pahs.pdf. Accessed March 2013

  • Kamboj SS, Sambyal V (2006) Increased chromosomal aberrations in peripheral blood lymphocytes of traffic policemen of Amritsar City. Int J Hum Genet 6:125–131

    CAS  Google Scholar 

  • Kavouras JG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D et al (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35:2288–2294

    Article  CAS  Google Scholar 

  • Khaiwal R, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E et al (2006) Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785

    Article  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 4:533–542

    Article  Google Scholar 

  • Lee WJ, Wang YF, Lin TC, Chen YY, Lin WC, Ku CC et al (1995) PAH characteristics in the ambient air of traffic-source. Sci Total Environ 159:185–200

    Article  CAS  Google Scholar 

  • Li R, Ning Z, Majumdar R, Cui J, Takabe W, Jen N et al (2010) Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: implication of chemical components and NF-κB signalling. Part Fibre Toxicol 7:6–15

    Article  Google Scholar 

  • Marr LC, Kirchstetter TW, Harley RA (1999) Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 33:3091–3099

    Article  CAS  Google Scholar 

  • Masih J, Singhvi R, Kumar K, Jain VK, Taneja A (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol Air Qual Res 12:515–525

    CAS  Google Scholar 

  • Mastral AM, Callén MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051–3057

    Article  CAS  Google Scholar 

  • Ministry of Environment and Forest (2009) Ministry of Environment and Forest, Environment (protection) seventh amendment rules. Government of India Press, New Delhi

    Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2011) PM 2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bull Environ Contam Toxicol 87:330–335

    Article  CAS  Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2012) Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ Sci Pollut Res 18:764–771

    Article  Google Scholar 

  • Muendo M, Hanai Y, Kameda Y, Masunaga S (2006) Polycyclic aromatic hydrocarbons in urban air: concentration level, patterns, and source analysis in Nairobi, Kenya. Environ Forensics 7:147–157

    Article  CAS  Google Scholar 

  • Nisbet C, LaGoy P (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Okuda T, Naoi D, Tenmoku M (2006) Polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Beijing, China. Measured by aminopropylsilane chemically-bonded stationary-phase column chromatography and HPLC/fluorescence detection. Chemosphere 65:427–435

    Article  CAS  Google Scholar 

  • Park SU, Kim JG, Jeong MJ, Song BJ (2011) Source identification of atmospheric polycyclic aromatic hydrocarbons in industrial complex using diagnostic ratios and multivariate factor analysis. Arch Environ Contam Toxicol 60:576–589

    Article  CAS  Google Scholar 

  • Pengchai P, Chantara S, Sopajaree K, Wangkarn S, Tengcharoenkul U, Rayanakorn M (2009) Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ Monit Assess 154:197–218

    Article  CAS  Google Scholar 

  • Punjab Urban Planning and Development Authority (2010) Punjab Urban Planning and Development Authority, Master Plan Amritsar 2010–2031. Mohali, Punjab

    Google Scholar 

  • Rajput N, Lakhani A (2010) Measurement of polycyclic aromatic hydrocarbons in an urban atmosphere of Agra, India. Atmosfera 32:165–183

    Google Scholar 

  • Rajput N, Lakhani A (2012) Particle associated polycyclic aromatic hydrocarbons (PAHs) in urban air of Agra. Polycycl Aromat Compd 32:48–60

    Article  CAS  Google Scholar 

  • Ram S, Awasthi S, Mahdi AA, Patel DK, Singh VK, Mishra R (2009) Assessment of association of exposure to polycyclic aromatic hydrocarbons with bronchial asthma and oxidative stress in children: a case control study. Indian J Occup Environ Med 13:33–37

    Article  Google Scholar 

  • Ramirez N, Cuadras N, Rovira E, Marce RM, Borrull F (2011) Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ Health Perspect 119:1110–1116

    Article  CAS  Google Scholar 

  • Rishipal M (2009) Potassium as marker of crop residue burning in total suspended particulate matter in ambient air of Patiala. Masters of Technology thesis, Thapar University, Patiala, India

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    Article  CAS  Google Scholar 

  • Sahu SK, Pandit GG, Puranik VD (2008) Dry deposition of polycyclic aromatic hydrocarbons associated with atmospheric particulate matters in an urban site, Mumbai, India. Aerosol Air Qual Res 8(4):437–446

    CAS  Google Scholar 

  • Salam MA, Shirasuna Y, Hirano K, Masunaga S (2011) Particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of urban and suburban residential area. Int J Environ Sci Technol 8:255–266

    CAS  Google Scholar 

  • Samet JM, Domonici F, Frank C, Curriero CI, Zeger SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. New Engl J Med 343:1742–1749

    Article  CAS  Google Scholar 

  • Sarkar S, Khillare PS (2011) Association of polycyclic aromatic hydrocarbons (PAHs) and metallic species in a tropical urban atmosphere—Delhi, India. J Atmos Chem 68:107–126

    Article  CAS  Google Scholar 

  • Sarkar S, Khillare PS (2012) Profile of PAHs in the inhalable particulate fraction: source apportionment and associated health risks in a tropical Megacity. Environ Monit Assess 185(2):1199–1213

    Article  Google Scholar 

  • Sellappa S, Mani B, Keyan KS (2011) Cytogenetic bio-monitoring of road paving workers occupationally exposed to polycyclic aromatic hydrocarbons. Asian Pac J Cancer Prev 12:713–717

    Google Scholar 

  • Senthilkumar K, Sajwan KS, Richardson J, Kannan K (2008) Contamination profiles of heavy metals, organochlorine pesticides, polycyclic aromatic hydrocarbons, and alkylphenols in sediment and oyster collected from marsh/estuarine Savannah GA USA. Mar Pollut Bull 56:136–149

    Article  Google Scholar 

  • Shakour AA, El-Shahat MF, El-Taieb NM, Hassanein MA, Mohamed AMF (2011) Polycyclic aromatic hydrocarbons in atmosphere over Greater Cairo,Egypt. J Am Sci 7:849–860

    Google Scholar 

  • Sharma H, Jain VK, Khan ZH (2007) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere 66:302–310

    Article  CAS  Google Scholar 

  • Sharma H, Jain VK, Khan ZH (2008) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in the urban air of Delhi during 2003. Environ Monit Assess 147:43–55

    Article  CAS  Google Scholar 

  • Shi GL, Feng YC, Wu JH, Li X, Wang YQ, Xue YH et al (2009) Source identification of polycyclic aromatic hydrocarbons in urban particulate matter of Tangshan, China. Aerosol Air Qual Res 3:309–315

    Google Scholar 

  • Shi J, Peng Y, Li W, Qiu W, Bai Z, Kong S et al (2010) Characterization and source identification of pm10-bound polycyclic aromatic hydrocarbons in urban air of Tianjin, China. Aerosol Air Qual Res 10:507–518

    CAS  Google Scholar 

  • Singh DP, Gadi R, Mandal TK (2012) Characterization of gaseous and particulate polycyclic aromatic hydrocarbons in ambient air of Delhi, India. Polycycl Aromat Compd 32:556–579

    Article  CAS  Google Scholar 

  • Takasuga T, Umetsu N, Makino T, Tsubota K, Sajwan KS, Senthilkumar K (2007) Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper. Arch Environ Contam Toxicol 53:8–21

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1989) Risk assessment guidance for superfund. Volume I. Human health evaluation manual (part A). EPA 540-1-89-002, Office of Emergency and Remedial Response. USEPA, Washington

  • United States Environmental Protection Agency (1994) Amendments to 1990 Clean Air Act—list of 189 hazardous air pollutants. USEPA, Washington

    Google Scholar 

  • United States Environmental Protection Agency (2012). http://www.epa.gov/reg3hwmd/risk/human. Accessed 20 Dec 2012

  • Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50:395–403

    Article  CAS  Google Scholar 

  • Wang GH, Huang L, Zhao X, Niu HY, Dai ZX (2006) Aliphatic and polycyclic aromatic hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China. Atmos Res 81:54–66

    Article  CAS  Google Scholar 

  • Wang HK, Chen KS, Lu JJ, Peng YP, Wang WC, Tsai MY et al (2007) Dry deposition of airborne particles and characteristics of polycyclic aromatic hydrocarbons in urban Kaohsiung,Taiwan. Aerosol Air Qual Res 7:106–120

    CAS  Google Scholar 

  • Wärmländer SKTS, Sholts SB, Erlandson JM, Gjerdrum T, Westerholm R (2011) Could the health decline of prehistoric California Indians be related to exposure to polycyclic aromatic hydrocarbons (PAHs) from natural bitumen? Environ Health Perspect 119:1203–1207

    Article  Google Scholar 

  • Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • World Health Organization–International Programme on Chemical Safety (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. EHC 202. http://www.inchem.org/documents/ehc/ehc/ehc202.htm. Accessed March 2013

  • Yang HH, Lee WJ, Chen SJ, Lai SO (1998) PAH emission from various sources industrial stacks. J Hazard Mater 60:159–174

    Article  CAS  Google Scholar 

  • Zhang Y, Quraishi T, Schauer JJ (2008) Daily variations in sources of carbonaceous aerosol in Lahore, Pakistan during a high pollution spring episode. Aerosol Air Qual Res 8:130–146

    CAS  Google Scholar 

  • Zhang Y, Tao S, Shen H, Ma J (2009) Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc Natl Acad Sci USA 106:21063–21067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the chairman and member secretary of the Central Pollution Control Board for providing the necessary facilities and infrastructure at National Reference Trace Organics Laboratory. The authors are also thankful to Rajinder Singh, laboratory attendant, and other laboratory staff members of the Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India, for help during sampling. Help from staff members of the National Reference Trace Organics Laboratory during sample processing and analysis is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurunthachalam Senthilkumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Senthilkumar, K., Verma, V.K. et al. Preliminary Analysis of Polycyclic Aromatic Hydrocarbons in Air Particles (PM10) in Amritsar, India: Sources, Apportionment, and Possible Risk Implications to Humans. Arch Environ Contam Toxicol 65, 382–395 (2013). https://doi.org/10.1007/s00244-013-9912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9912-6

Keywords

Navigation