Skip to main content
Log in

Impact of Atrazine on Chlorpyrifos Toxicity in Four Aquatic Vertebrates

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Atrazine has been shown previously to potentiate chlorpyrifos toxicity in selected invertebrates. This study examined interactions of atrazine and chlorpyrifos in four aquatic vertebrates. Organisms were exposed to binary mixtures of atrazine and chlorpyrifos during toxicity bioassays. Inhibition of cholinesterase (ChE) enzyme activity and chlorpyrifos uptake kinetics were also examined with and without atrazine exposure. Atrazine alone did not affect organisms at concentrations up to 5000 μg/L; however, the presence of atrazine at 1000 μg/L did result in a significant increase in the acute toxicity of chlorpyrifos in Xenopus laevis. Mixed results were encountered with Pimephales promelas; some bioassays showed greater than additive toxicity, while others showed an additive response. No effect of atrazine on chlorpyrifos toxicity was observed for Lepomis macrochirus and Rana clamitans. Atrazine did not affect ChE activity or chlorpyrifos uptake rates, indicating that these toxicodynamic and toxicokinetic parameters may not be related to the mechanism of atrazine potentiation of chlorpyrifos toxicity. Based on the results of this study, it does not appear that a mixture toxicity of atrazine and chlorpyrifos at environmentally relevant concentrations presents a risk to the vertebrate organisms examined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Andersson T, Förlin L (1992) Regulation of the cytochrome P450 enzyme system in fish. Aquat Toxicol 24:1–20

    Article  CAS  Google Scholar 

  • Anderson T, Lydy M (2002) Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem 21:1507–1514

    Article  CAS  Google Scholar 

  • Belden J, Lydy M (2000) Impact of atrazine on organophosphate insecticide toxicity. Environ Toxicol Chem 19:2266–2274

    Article  CAS  Google Scholar 

  • Belden J, Lydy M (2001) Effects of atrazine on acetylcholinesterase activity in midges (Chironomus tentans) exposed to organophosphorus insecticides. Chemosphere 44:1685–1689

    Article  CAS  Google Scholar 

  • Belden J, Hofelt C, Lydy M (2000) Analysis of multiple pesticides in urban storm water using solid-phase extraction. Arch Environ Contam Toxicol 38:7–10

    Article  CAS  Google Scholar 

  • Beste C (1983) Herbicide handbook of the weed society of America. Weed Society of America, Champaign, Illinois

    Google Scholar 

  • Biagianti-Risbourg S, Bastide J (1995) Hepatic perturbations induced by an herbicide (atrazine) in juvenile grey mullet Liza ramada (Mugilidae, Teleostei): An ultrastructural study. Aquat Toxicol 31:217–229

    Article  CAS  Google Scholar 

  • Blaustein A, Wake D, Sousa W (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71

    Article  Google Scholar 

  • Denton D, Wheelock C, Murray S, Deanovic L, Hammock B, Hinton D (2003) Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 22:336

    Article  CAS  Google Scholar 

  • Doherty M, Khan M (1981) Hepatic microsomal mixed-function oxidase in the frog, Xenopus laevis. Comp Biochem Physiol 68: 221–228

    Google Scholar 

  • Ellman G, Courtney K, Andres V, Featherstone R (1961) A new and rapid coloremetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Etheridge A, Richter S (1978) Xenopus laevis: Rearing and breeding the African clawed frog. Nasco, Fort Atkinson, Wisconsin

    Google Scholar 

  • Gindi T, Knowland J (1979) The activity of cholinesterase during the development of Xenopus laevis. J Embryol Exp Morph 51:209–215

    CAS  Google Scholar 

  • Goksøyr A, Förlin L (1992) The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat Toxicol 22:287–312

    Article  Google Scholar 

  • Harris M, Bishop C, Struger J, Ripley B, Bogart J (1998) The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clamitans) populations in orchard wetlands II. Effects of pesticides and eutrophic conditions on early life stage development. Environ Toxicol Chem 17:1351–1363

    Article  CAS  Google Scholar 

  • Harvey PW, DJ Everett (2003) The adrenal cortex and steroidogenesis as cellular and molecular targets for toxicity: Critical omissions from regulatory endocrine disruptor screening strategies for human health? J Appl Toxicol 23:81–87

    Article  CAS  Google Scholar 

  • Hayes T, Collins A, Lee M, Mendozza M, Noriega N, Stuart A, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci USA 99:5476–5480

    Article  CAS  Google Scholar 

  • Jin-Clark Y, Lydy M, Zhu K (2002) Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera: Chironomidae). Environ Toxicol Chem 21:598–603

    Article  CAS  Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticide industry sales and usage: 2000 and 2001 market estimates. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Kiesecker J (2002) Synergism between trematode infection and pesticide exposure: A link to amphibian limb deformities in nature? Proc Natl Acad Sci USA 99:9900–9904

    Article  CAS  Google Scholar 

  • Klaassen C (2001) Casarett and Doull’s Toxicology. McGraw-Hill, New York, New York

    Google Scholar 

  • Linder G, Krest S, Sparling D (2003) Amphibian Decline: An integrated analysis of multiple stressor effects. SETAC Press, Pensacola, Florida

    Google Scholar 

  • Londoñdo D, Siegfried B, Lydy M (2004) Molecular characterization of atrazine induction of Cytochrome P450 in Chironomus tentans (Fabricius) (Diptera: Chironomidae). Chemosphere 56:701–706

    Article  CAS  Google Scholar 

  • Lower N, Moore A, Scott A, Ellis T, James K, Russell I (2005) A non-invasive method to assess the impacts of electronic tag insertion on stress levels in fish. J Fish Biol 67:1202–1212

    Article  Google Scholar 

  • Lydy M, Linck S (2003) Assessing the impact of triazine herbicides on organophosphate insecticide toxicity to the earthworm Eisenia fetida. Arch Environ Contam Toxicol 45:343–349

    Article  CAS  Google Scholar 

  • Lydy M, Lasater L, Landrum P (2000) Toxicokinetic of DDE and 2-Chlorobipphenyl in Chironomus tentans. Arch Environ Contam Toxicol 38:163–168

    Article  CAS  Google Scholar 

  • Miota F, Siegfried B, Scharf M, Lydy M (2000) Atrazine induction of cytochrome P450 in Chironomus tentans larvae. Chemosphere 40:285–291

    Article  CAS  Google Scholar 

  • Mukhopadhyay I, Nazir A, Saxena D, Kar Cowdhuri D (2003) Heat shock response: hsp70 in environmental monitoring. J Biochem Mol Toxicol 17:249–254

    Article  CAS  Google Scholar 

  • Nieuwkoop P, Faber J (1994) The stages of Xenopus embryonic development. Garland Publishing Inc, New York, New York

    Google Scholar 

  • Oleksiak M, Wu S, Parkers C, Karchner S, Stegemen J, Zeldin D (2000) Identification, functional characterization, and regulation of a new cytochrome P450 subfamily, the CYP2Ns. J Biol Chem 275:2312–2321

    Article  CAS  Google Scholar 

  • Orme S, Kegley S (2004) PAN Pesticide database. Pesticide Action Network, San Francisco, California

    Google Scholar 

  • Oruç E, Üner N (2002) Marker enzyme assessment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl. J Biochem Mol Toxicol 16:182–188

    Article  CAS  Google Scholar 

  • Pape-Lindstrom P, Lydy M (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420

    Article  CAS  Google Scholar 

  • Perry C (1990) Source, extent, and degradation of herbicides in a shallow water aquifer near Hesston, Kansas. Water-Resources Investigations Report 91-4019. US Geological Survey, Lawrence, Kansas

  • Pruett SB, Fan R, Zheng Q, Myers L, Hèbert P (2003) Modeling and predicting immunological effects of chemical stressors: Characterization of a quantitative biomarker for immunological changes caused by atrazine and ethanol. Toxicol Sci 75:323–354

    Article  CAS  Google Scholar 

  • Richards S, Kendall R (2002) Biochemical effects of chlorpyrifos on two developmental stages of Xenopus laevis. Environ Toxicol Chem 21:1826–1835

    Article  CAS  Google Scholar 

  • Rocha-e-Silva T, Rossa M, Rantin F, Matsumura-Tundisi T, Tundisi J, Degterev I (2004) Comparison of liver mixed-function oxygenase and antioxidant enzymes in vertebrates. Comp Biochem Phys C 137:155–165

    Google Scholar 

  • Rosès N, M Poquet I Munoz. 1999. Behavioral and histological effects of atrazine on freshwater mollusks (Physa acuta Drap. and Ancylus fluviatilis Mull. Gastropoda). J Appl Toxicol 19:351–356

    Article  Google Scholar 

  • Saito H, Ohi H, Sugata E, Murayama N, Fujita Y, Higuchi S (1997) Purification and characterization of a cytochrome p450 from liver microsomes of Xenopus laevis. Arch Biochem Biophys 345:56–64

    Article  CAS  Google Scholar 

  • Schuler L, Trimble A, Belden J, Lydy J (2005) Joint toxicity of triazine herbicides and organophosphate insecticides to the midge Chironomus tentans. Arch Environ Contam Toxicol 49:173–177

    Article  CAS  Google Scholar 

  • Schuler L, Wheeler M, Bailer A, Lydy M (2003) Toxicokinetics of sediment-sorbed benzo[a]pyrene and hexachlorobiphenyl using the freshwater invertebrates Hyalella azteca, Chironomus tentans, and Lumbriculus variegatus. Environ Toxicol Chem 22:439–449

    Article  CAS  Google Scholar 

  • Selim H (2003) Retention and runoff losses of atrazine and metribuzin in soil. J Environ Qual 32:1058–1071

    Article  CAS  Google Scholar 

  • Solomon K, Baker D, Richards R, Dixon K, Klaine S, La Point T, Kendall R, Weisskopf C, Giddings J, Giesy J, Hall L, Williams W (1996) Ecological Risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Tanguy A, Boutet I, Laroche J, Moraga D (2005) Molecular identification and expression study of differentially regulated genes in the Pacific oyster Crassostrea gigas in response to pesticide exposure. FEBS 272:390–403

    Article  CAS  Google Scholar 

  • Thurman E, Goolsby D, Meyer M, Mills M, Pomes M, Kolpin D (1992) A reconnaissance study of herbicides and their metabolites in surface water in the Midwestern United States using immunoassay and gas chromatography / mass spectrometry. Environ Sci Technol 26:2440–2447

    Article  CAS  Google Scholar 

  • Trimble J, Lydy M (2006) Effects of triazine herbicides on organophosphate insecticide toxicity in Hyalella azteca. Arch Environ Contam Toxicol 51:29–34

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1994) Short-term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. EPA-600-4-91-002. US Environmental Protection Agency, Washington, DC

  • US Geological Survey (1998) Pesticides in surface and ground water in the United States: summary of results of the National Water Quality Assessment Program (NAWQA). US Geological Survey Pesticide National Synthesis Project, Sacramento, California

    Google Scholar 

  • Wake D (1991) Declining amphibian populations. Science 253:860

    Article  CAS  Google Scholar 

  • Woolhouse H (1981) Aspects of the carbon and energy requirements of photosynthesis considered in relation to environmental constraints. In: Townsend CR, Calow P (eds) Physiological ecology. Sinauer Associates, Sunderland, Massachusetts, p 51–85

    Google Scholar 

Download references

Acknowledgments

This research was funded by the United States Department of Agriculture through the National Research Initiative Competitive Grant Program (Grant No.: 2003-35102-13545). The authors would like to thank W. Muhlach, J. Belden, C. Straub, L. Schuler, and A. Trimble for their assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lydy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wacksman, M.N., Maul, J.D. & Lydy, M.J. Impact of Atrazine on Chlorpyrifos Toxicity in Four Aquatic Vertebrates. Arch Environ Contam Toxicol 51, 681–689 (2006). https://doi.org/10.1007/s00244-005-0264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-005-0264-8

Keywords

Navigation