Skip to main content
Log in

Proteasome-Related HslU and HslV Genes Typical of Eubacteria Are Widespread in Eukaryotes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Many eubacteria contain an ATP-dependent protease complex, which is built by multiple copies of the HslV and HslU proteins and is therefore called HslVU. HslU proteins are AAA + ATPases, while HslV proteins are proteases that show highly significant similarity to β subunits of proteasomes. Therefore, the HslVU complex has been envisaged as a precursor or ancestral type of proteasome. Here we show that species of most of the main eukaryotic lineages have HslU and HslV genes very similar to those found in proteobacteria. We have detected them in amoebozoa, plantae, chromoalveolata, rhizaria, and excavata species. Phylogenetic analyses suggest that these genes have been obtained by endosymbiosis from the proteobacterial ancestor that gave rise to eukaryotic mitochondria. The products encoded by these eukaryotic genes adopt, according to modeling based on the known crystal structures of prokaryotic HslU and HslV proteins, conformations that are compatible with their being fully active, suggesting that functional HslVU complexes may be present in many eukaryotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bochtler M, Ditzel L, Groll M, Huber RR (1997) Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci USA 94:6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, Huber R (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403:800–805

    Article  PubMed  CAS  Google Scholar 

  • Bouzat JL, McNeil LK, Robertson HM, Solter LF, Nixon JE, Beever JE, Gaskins HR, Olsen G, Subramaniam S, Sogin ML, Lewin HA (2000) Phylogenomic analysis of the alpha proteasome gene family from early-diverging eukaryotes. J Mol Evol 51:532–543

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc Biol Sci 271:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Chuang SE, Burland V, Plunkett 3rd G, Daniels DL, Blattner FR (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Couvreur B, Wattiez R, Bollen A, Falmagne P, Le Ray D, Dujardin JC (2002) Eubacterial HslV and HslU subunits homologs in primordial eukaryotes. Mol Biol Evol 19:2110–2117

    PubMed  CAS  Google Scholar 

  • De Mot R, Nagy I, Walz J, Baumeister W (1999) Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol 7:88–92

    Article  PubMed  Google Scholar 

  • Gille C, Goede A, Schloetelburg C, Preissner R, Kloetzel PM, Gobel UB, Frommel C (2003) A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 326:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R (2005) Molecular machines for protein degradation. Chem Biochem 6:222–256

    CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1997) Evolution of the proteasome components. Immunogenetics 46:82–92

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Zuhl F, Tamura T, Wolf S, Nagy I, De Mot R, Baumeister W (1997) Eubacterial proteasomes. Mol Biol Rep 24:125–131

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: Analysis and visualization of genetic variation. Distributed by the authors; http://www.psc.edu/biomed/genedoc/

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279

    PubMed  CAS  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Rohrwild M, Pfeifer G, Santarius U, Muller SA, Huang HC, Engel A, Baumeister W, Goldberg AL (1997) The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol 4:133–139

    Article  PubMed  CAS  Google Scholar 

  • Simpson AG, Roger AJ (2004) The real ‘kingdoms’ of eukaryotes. Curr Biol 14:R693–R696

    Article  PubMed  CAS  Google Scholar 

  • Sitnikova T, Rzhetsky A, Nei M (1995) Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol 12:319–333

    PubMed  CAS  Google Scholar 

  • Song HK, Hartmann C, Ramachandran R, Bochtler M, Behrendt R, Moroder L, Huber R (2000) Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci USA 97:14103–14108

    Article  PubMed  CAS  Google Scholar 

  • Sousa MC, Trame CB, Tsuruta H, Wilbanks SM, Reddy VS, McKay DB (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103:633–643

    Article  PubMed  CAS  Google Scholar 

  • Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22

    PubMed  CAS  Google Scholar 

  • Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH (2001) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9:177–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our group is supported by Grants GEN2001-4851-C06-02 and SAF2003-09506 (Ministerio de Educación y Ciencia, Spain) and Grant GV04B-141 (Generalitat Valenciana, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Marín.

Additional information

[Reviewing Editor: Dr. Yves Van de Peer]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-González, M.X., Marín, I. Proteasome-Related HslU and HslV Genes Typical of Eubacteria Are Widespread in Eukaryotes. J Mol Evol 63, 504–512 (2006). https://doi.org/10.1007/s00239-005-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0282-1

Keywords

Navigation