Skip to main content
Log in

Evolutionary History and Mode of the amylase Multigene Family in Drosophila

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Previous studies indicate that the tandemly repeated members of the amylase (Amy) gene family evolved in a concerted manner in the melanogaster subgroup and in some other species. In this paper, we analyzed all of the 49 active and complete Amy gene sequences in Drosophila, mostly from subgenus Sophophora. Phylogenetic analysis indicated that the two types of diverged Amy genes in the Drosophila montium subgroup and Drosophila ananassae, which are located in distant chromosomal regions from each other, originated independently in different evolutionary lineages of the melanogaster group after the split of the obscura and melanogaster groups. One of the two clusters was lost after duplication in the melanogaster subgroup. Given the time, 24.9 mya, of divergence between the obscura and the melanogaster groups (Russo et al. 1995), the two duplication events were estimated to occur at about 13.96 ± 1.93 and 12.38 ± 1.76 mya in the montium subgroup and D. ananassae, respectively. An accelerated rate of amino acid changes was not observed in either lineage after these gene duplications. However, the G+C contents at the third codon positions (GC3) decreased significantly along one of the two Amy clusters both in the montium subgroup and in D. ananassae right after gene duplication. Furthermore, one of the two types of the Amy genes with a lower GC3 content has lost a specific regulatory element within the montium subgroup species and D. ananassae. While the tandemly repeated members evolved in a concerted manner, the two types of diverged Amy genes in Drosophila experienced frequent gene duplication, gene loss, and divergent evolution following the model of a birth-and-death process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. N Arnheim (1983) Concerted evolution of multigene families. M Nei RK Koehn (Eds) Evolution of genes and proteins. Sinauer Associates Sunderland, MA

    Google Scholar 

  2. MD Ashburner (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  3. SM Beverley AC Wilson (1984) ArticleTitleMolecular evolution in Drosophila and the higher Diptera. II. A time scale for fly evolution. J Mol Evol 21 1–31 Occurrence Handle1:CAS:528:DyaL2MXlvFKltA%3D%3D Occurrence Handle6442354

    CAS  PubMed  Google Scholar 

  4. AJL Brown D Ish-Horowicz (1981) ArticleTitleEvolution of the 87A and 87C heat-shock loci in Drosophila. Nature 290 677–682 Occurrence Handle6261150

    PubMed  Google Scholar 

  5. CJ Brown CF Aquadro WW Anderson (1990) ArticleTitleDNA sequence evolution of the amylase multigene family in Drosophila pseudoobscura. Genetics 126 131–138 Occurrence Handle1:CAS:528:DyaK3MXhsFyjtL4%3D Occurrence Handle1699840

    CAS  PubMed  Google Scholar 

  6. A Clark (1994) ArticleTitleInvasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91 2950–2954 Occurrence Handle1:CAS:528:DyaK2cXktVantrs%3D Occurrence Handle8159686

    CAS  PubMed  Google Scholar 

  7. J-L Da Lage F Maczkowiak M-L Cariou (2000) ArticleTitleMolecular characterization and evolution of the amylase multigene family of Drosophila ananassae. J Mol Evol 51 391–403 Occurrence Handle11040291

    PubMed  Google Scholar 

  8. O Dainou M-L Cariou JR David D Hickey (1987) ArticleTitle Amylase gene duplication: An ancestral trait in the Drosophila melanogaster species subgroup. Heredity 59 245–251 Occurrence Handle1:CAS:528:DyaL1cXnt1GhtA%3D%3D Occurrence Handle2445712

    CAS  PubMed  Google Scholar 

  9. WW Doane RM Gemmill PE Schwartz SA Hawley R Norman (1987) ArticleTitleStructural organization of alpha-amylase gene locus in Drosophila melanogaster and Drosophila miranda. Isozymes Curr Top Biol Med Res 14 229–266 Occurrence Handle1:CAS:528:DyaL2sXkslWlsLY%3D Occurrence Handle3110097

    CAS  PubMed  Google Scholar 

  10. J Felsenstein (2002) PHYLIP: Phylogeny inference package, version 3.6a3. Department of Genome Sciences, University of Washington Seattle

    Google Scholar 

  11. N Galtier M Gouy (1998) ArticleTitleInferring the pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol 15 871–879 Occurrence Handle1:CAS:528:DyaK1cXksFCisbY%3D Occurrence Handle9656487

    CAS  PubMed  Google Scholar 

  12. BL Hibner WD Burke TH Eickbush (1991) ArticleTitleSequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics 128 595–606 Occurrence Handle1:CAS:528:DyaK38XhsFel Occurrence Handle1874417

    CAS  PubMed  Google Scholar 

  13. DA Hickey L Bally-Cuif S Abukashawa V Payant BF Benkel (1991) ArticleTitleConcerted evolution of duplicated protein-coding genes in Drosophila. Proc Natl Acad Sci USA 88 1611–1615 Occurrence Handle1:CAS:528:DyaK3MXhsFygt7c%3D Occurrence Handle1900365

    CAS  PubMed  Google Scholar 

  14. N Inomata K Kanda ML Cariou H Tachida T Yamazaki (1995) ArticleTitleEvolution of the response patterns to dietary carbohydrates and the developmental differentiation of gene expression of alpha-amylase in Drosophila. J Mol Evol 41 1076–1084 Occurrence Handle1:CAS:528:DyaK28XivFOgtA%3D%3D Occurrence Handle8587106

    CAS  PubMed  Google Scholar 

  15. N Inomata H Tachida T Yamazaki (1997) ArticleTitleMolecular evolution of the Amy multigenes in the subgenus Sophophora of Drosophila. Mol Biol Evol 14 942–950 Occurrence Handle1:CAS:528:DyaK2sXlvVejurc%3D Occurrence Handle9287427

    CAS  PubMed  Google Scholar 

  16. N Inomata T Yamazaki (2000) ArticleTitleEvolution of nucleotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species. Mol Biol Evol 17 601–615 Occurrence Handle1:CAS:528:DC%2BD3cXisVSgtL8%3D Occurrence Handle10742051

    CAS  PubMed  Google Scholar 

  17. TH Jukes CR Cantor (1969) Evolution of protein molecules. HN Monro (Eds) Mammalian protein metabolism. Academic Press New York 21–32

    Google Scholar 

  18. M Kimura (1980) ArticleTitleA simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111–120 Occurrence Handle7463489

    PubMed  Google Scholar 

  19. S Kumar K Tamura IB Jakobsen M Nei (2001) MEGA2: Molecular evolutionary genetics analysis software. Arizona State University Tempe

    Google Scholar 

  20. D Liao (199) ArticleTitleConcerted evolution: Molecular mechanism and biological implications. Am J Hum Genet 64 24–30 Occurrence Handle10.1086/302221

    Article  Google Scholar 

  21. SA Liebhaber M Goossens YW Kan (1981) ArticleTitleHomology and concerted evolution at the α1 and α2 loci of humanα-globin. Nature 290 26–29 Occurrence Handle1:CAS:528:DyaL3MXkt1ajsro%3D Occurrence Handle7010180

    CAS  PubMed  Google Scholar 

  22. M Nei AL Hughes (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. K Tsuji M Aizawa T Sasazuki (Eds) 11th histocompatibility workshop and conference. Oxford University Press Oxford, UK

    Google Scholar 

  23. M Nei X Gu T Sitnikova (1997) ArticleTitleEvolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94 7799–7806 Occurrence Handle1:CAS:528:DyaK2sXksl2nsbg%3D Occurrence Handle9223266

    CAS  PubMed  Google Scholar 

  24. M Nei IB Rogozin H Piontkivska (2000) ArticleTitlePurifying selection and birth-and-death evolution in the ubiquitin gene family. Proc Natl Acad Sci USA 97 10866–10871 Occurrence Handle10.1073/pnas.97.20.10866 Occurrence Handle1:CAS:528:DC%2BD3cXnt1ahs7o%3D Occurrence Handle11005860

    Article  CAS  PubMed  Google Scholar 

  25. T Ohta (1987) ArticleTitleSimulating evolution by gene duplication. Genetics 115 207–213 Occurrence Handle1:STN:280:BiiC28zksVM%3D Occurrence Handle3557113

    CAS  PubMed  Google Scholar 

  26. T Ota M Nei (1994) ArticleTitleDivergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol 11 469–482 Occurrence Handle1:CAS:528:DyaK2cXktVOjurk%3D Occurrence Handle8015440

    CAS  PubMed  Google Scholar 

  27. V Payant S Abukashawa M Sasseville BF Benkel DA Hickey J David (1988) ArticleTitleEvolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup. Mol Biol Evol 5 560–560 Occurrence Handle1:CAS:528:DyaL1cXmtVKitrk%3D Occurrence Handle2461506

    CAS  PubMed  Google Scholar 

  28. A Popadic RA Morman WW Doane WW Anderson (1996) ArticleTitleThe evolutionary history of the amylase multigene family in Drosophila pseudoobscura. Mol Biol Evol 13 883–888 Occurrence Handle1:CAS:528:DyaK28XktFygsb4%3D Occurrence Handle8754223

    CAS  PubMed  Google Scholar 

  29. HM Robertson (1998) ArticleTitleTwo large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 8 449–463 Occurrence Handle1:CAS:528:DyaK1cXjt1alur4%3D Occurrence Handle9582190

    CAS  PubMed  Google Scholar 

  30. F Rodriguez-Trelles R Tarrio FJ Ayala (2000) ArticleTitleEvidence for a high ancestral GC content in Drosophila. Mol Biol Evol 17 1710–1717 Occurrence Handle1:CAS:528:DC%2BD3cXnvFyqt74%3D Occurrence Handle11070058

    CAS  PubMed  Google Scholar 

  31. AP Rooney H Piontkivska M Nei (2002) ArticleTitleMolecular evolution of the histone 3 multigene family. Mol Biol Evol 19 68–75 Occurrence Handle1:CAS:528:DC%2BD38XhtFCisQ%3D%3D Occurrence Handle11752191

    CAS  PubMed  Google Scholar 

  32. CAM Russio N Takezaki M Nei (1995) ArticleTitleMolecular phylogeny and divergence times of Drosophilia species. Mol Biol Evol 12 391–404 Occurrence Handle1:CAS:528:DyaK2MXltF2ntb8%3D Occurrence Handle7739381

    CAS  PubMed  Google Scholar 

  33. N Saitou M Nei (1987) ArticleTitleThe neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  34. H Shibata T Yamazaki (1995) ArticleTitleMolecular evolution of the duplicated Amy locus in Drosophila melanogaster species subgroup: Concerted evolution only in coding region and excess of nonsynonymous substitutions in speciation. Genetics 141 223–236 Occurrence Handle1:CAS:528:DyaK28Xht1CmtrY%3D Occurrence Handle8536970

    CAS  PubMed  Google Scholar 

  35. GP Smith (1974) ArticleTitleUnequal crossover and the evolution of multigene families. Cold Spring Harbor Symp Quant Biol 38 507–513 Occurrence Handle1:STN:280:CSuC2svks1E%3D Occurrence Handle4524771

    CAS  PubMed  Google Scholar 

  36. S Steinemann M Steinemann (1999) ArticleTitleThe amylase gene cluster on the evolving sex chromosomes of Drosophila miranda. Genetics 151 151–161 Occurrence Handle1:CAS:528:DyaK1MXovVChtw%3D%3D Occurrence Handle9872956

    CAS  PubMed  Google Scholar 

  37. DL Swofford (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0 beta version. Sinauer Associates Sunderland, MA

    Google Scholar 

  38. K Tamura M Nei (1993) ArticleTitleEstimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10 512–526 Occurrence Handle1:CAS:528:DyaK3sXks1CksL4%3D Occurrence Handle8336541

    CAS  PubMed  Google Scholar 

  39. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876–4882 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    CAS  PubMed  Google Scholar 

  40. JB Walsh (1995) ArticleTitleHow often do duplicated genes evolve new functions? Genetics 139 421–428 Occurrence Handle1:STN:280:ByqB38%2FmvVQ%3D Occurrence Handle7705642

    CAS  PubMed  Google Scholar 

  41. Z Zhang N Inomata T Ohba M-L Cariou T Yamazaki (2002) ArticleTitleCodon bias differentiates between the duplicated amylase loci following gene duplication in Drosophila. Genetics 161 1187–1196 Occurrence Handle1:CAS:528:DC%2BD38XmsF2qsr8%3D Occurrence Handle12136021

    CAS  PubMed  Google Scholar 

  42. Z Zhang N Inomata M-L Cariou J-L Da Lage T Yamazaki (2003) ArticleTitlePhylogeny and evolution of the amylase multigenes in the Drosophila montium species subgroup. J. Mol Evol 56 121–130 Occurrence Handle10.1007/s00239-002-2384-3 Occurrence Handle1:CAS:528:DC%2BD3sXhtFKltr4%3D Occurrence Handle12574858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. J.L. Thorne and D. Lachaise for helpful discussions and to two anonymous reviewers for helpful comments that improved our manuscript. This work has been supported by BIRD of the Japan Science and Technology Corporation (JST) and the Japan Society for Promotion of Science (JSPS to H.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Inomata, N., Yamazaki, T. et al. Evolutionary History and Mode of the amylase Multigene Family in Drosophila . J Mol Evol 57, 702–709 (2003). https://doi.org/10.1007/s00239-003-2521-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-003-2521-7

Keywords

Navigation