Skip to main content

Advertisement

Log in

Neuroimaging after coma

  • Invited Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Following coma, some patients will recover wakefulness without signs of consciousness (only showing reflex movements, i.e., the vegetative state) or may show non-reflex movements but remain without functional communication (i.e., the minimally conscious state). Currently, there remains a high rate of misdiagnosis of the vegetative state (Schnakers et. al. BMC Neurol, 9:35, 8) and the clinical and electrophysiological markers of outcome from the vegetative and minimally conscious states remain unsatisfactory. This should incite clinicians to use multimodal assessment to detect objective signs of consciousness and validate para-clinical prognostic markers in these challenging patients. This review will focus on advanced magnetic resonance imaging (MRI) techniques such as magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI (fMRI studies in both “activation” and “resting state” conditions) that were recently introduced in the assessment of patients with chronic disorders of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laureys S, Boly M (2008) The changing spectrum of coma. Nat Clin Pract Neurol 4(10):544–546

    Article  PubMed  Google Scholar 

  2. Posner J, Saper C, Schiff N, Plum F (2007) Plum and Posner's diagnosis of stupor and coma. Oxford University Press, New York

    Google Scholar 

  3. The Multi-Society Task Force on PVS (1994) Medical aspects of the persistent vegetative state (1). N Engl J Med 330(21):1499–1508

    Article  Google Scholar 

  4. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, Zasler ND (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58(3):349–353

    PubMed  Google Scholar 

  5. American Congress of Rehabilitation Medicine (1995) Recommendations for use of uniform nomenclature pertinent to patients with severe alterations of consciousness. Arch Phys Med Rehabil 76:205–209

    Article  Google Scholar 

  6. Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313(7048):13–16

    CAS  PubMed  Google Scholar 

  7. Childs NL, Mercer WN (1996) Misdiagnosing the persistent vegetative state. Misdiagnosis certainly occurs [letter; comment]. BMJ 313(7062):944

    CAS  PubMed  Google Scholar 

  8. Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9:35

    Article  PubMed  Google Scholar 

  9. Giacino JT, Hirsch J, Schiff N, Laureys S (2006) Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch Phys Med Rehabil 87(12 Suppl):67–76

    Article  Google Scholar 

  10. Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79(1–2):135–160

    Article  CAS  PubMed  Google Scholar 

  11. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A, Franck G, Maquet P (1999) Impaired effective cortical connectivity in vegetative state. Neuroimage 9(4):377–382

    Article  CAS  PubMed  Google Scholar 

  12. Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L (2007) Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 11(5):230

    Article  PubMed  Google Scholar 

  13. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, Wu O, Sorensen AG (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25(3):370–376

    PubMed  Google Scholar 

  14. Marino S, Zei E, Battaglini M, Vittori C, Buscalferri A, Bramanti P, Federico A, De Stefano N (2007) Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry 78(5):501–507

    Article  PubMed  Google Scholar 

  15. Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, Bluml S, Shonk T, Mandigo JC, Caton W, Clark C, Jensen SW, Lehman NL, Arcinue E, Pudenz R, Shelden CH (1998) 1H MRS in acute traumatic brain injury. J Magn Reson Imaging 8(4):829–840

    Article  CAS  PubMed  Google Scholar 

  16. Trivedi MA, Ward MA, Hess TM, Gale SD, Dempsey RJ, Rowley HA, Johnson SC (2007) Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J Neurotrauma 24(5):766–771

    Article  PubMed  Google Scholar 

  17. Ricci R, Arbarella G, Musi P, Oldrini P, Revisan C, Asaglia N (1997) Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology 39:313–319

    Article  CAS  PubMed  Google Scholar 

  18. Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52(7):1384–1391

    CAS  PubMed  Google Scholar 

  19. Sinson G, Bagley LJ, Cecil KM, Torchia M, McGowan JC, Lenkinski RE, McIntosh TK, Grossman RI (2001) Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol 22(1):143–123

    CAS  PubMed  Google Scholar 

  20. Uzan M, Albayram S, Dashti SG, Aydin S, Hanci M, Kuday C (2003) Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry 74(1):33–38

    Article  CAS  PubMed  Google Scholar 

  21. Carpentier A, Galanaud D, Puybasset L, Muller JC, Lescot T, Boch AL, Riedl V, Cornu P, Coriat P, Dormont D, van Effenterre R (2006) Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect "invisible brain stem damage" and predict "vegetative states". J Neurotrauma 23(5):674–685

    Article  PubMed  Google Scholar 

  22. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10):2046–2054

    Article  PubMed  Google Scholar 

  23. Choe BY, Suh TS, Choi KH, Shinn KS, Park CK, Kang JK (1995) Neuronal dysfunction in patients with closed head injury evaluated by in vivo 1H magnetic resonance spectroscopy. Invest Radiol 30(8):502–506

    Article  CAS  PubMed  Google Scholar 

  24. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, Cozzone P, Lehericy S, Chiras J, Puybasset L (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 37(4):1448–1455

    Article  PubMed  Google Scholar 

  25. Gerber DJ, Weintraub AH, Cusick CP, Ricci PE, Whiteneck GG (2004) Magnetic resonance imaging of traumatic brain injury: relationship of T2*SE and T2GE to clinical severity and outcome. Brain Inj 18(11):1083–1097

    Article  PubMed  Google Scholar 

  26. Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY (2003) Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 24(6):1049–1056

    PubMed  Google Scholar 

  27. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1(7905):480–484

    Article  CAS  PubMed  Google Scholar 

  28. Yanagawa Y, Tsushima Y, Tokumaru A, Un-no Y, Sakamoto T, Okada Y, Nawashiro H, Shima K (2000) A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49(2):272–277

    Article  CAS  PubMed  Google Scholar 

  29. Levin HS, Mendelsohn D, Lilly MA, Yeakley J, Song J, Scheibel RS, Harward H, Fletcher JM, Kufera JA, Davidson KC, Bruce D (1997) Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya–Gennarelli model. Neurosurgery 40(3):432–441 discussion 440–431

    Article  CAS  PubMed  Google Scholar 

  30. Kampfl A, Schmutzhard E, Franz G, Pfausler B, Haring HP, Ulmer H, Felber S, Golaszewski S, Aichner F (1998) Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet 351(9118):1763–1767

    Article  CAS  PubMed  Google Scholar 

  31. Kampfl A, Franz G, Aichner F, Pfausler B, Haring HP, Felber S, Luz G, Schocke M, Schmutzhard E (1998) The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg 88(5):809–816

    Article  CAS  PubMed  Google Scholar 

  32. Firsching R, Woischneck D, Diedrich M, Klein S, Ruckert A, Wittig H, Dohring W (1998) Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg 89(5):707–712

    Article  CAS  PubMed  Google Scholar 

  33. Wedekind C, Fischbach R, Pakos P, Terhaag D, Klug N (1999) Comparative use of magnetic resonance imaging and electrophysiologic investigation for the prognosis of head injury. J Trauma 47(1):44–49

    Article  CAS  PubMed  Google Scholar 

  34. Hoelper BM, Soldner F, Chone L, Wallenfang T (2000) Effect of intracerebral lesions detected in early MRI on outcome after acute brain injury. Acta Neurochir Suppl 76:265–267

    CAS  PubMed  Google Scholar 

  35. Paterakis K, Karantanas AH, Komnos A, Volikas Z (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49(6):1071–1075

    Article  CAS  PubMed  Google Scholar 

  36. Karantanas A, Paterakis K (2000) Magnetic resonance imaging and brainstem injury. J Neurosurg 92(5):896–897

    CAS  PubMed  Google Scholar 

  37. Schaefer PW, Huisman TA, Sorensen AG, Gonzalez RG, Schwamm LH (2004) Diffusion-weighted MR imaging in closed head injury: high correlation with initial glasgow coma scale score and score on modified Rankin scale at discharge. Radiology 233(1):58–66

    Article  PubMed  Google Scholar 

  38. Galanaud D, Naccache L, Puybasset L (2007) Exploring impaired consciousness: the MRI approach. Curr Opin Neurol 20(6):627–631

    Article  PubMed  Google Scholar 

  39. Weiss N, Galanaud D, Carpentier A, Tezenas de Montcel S, Naccache L, Coriat P, Puybasset L (2008) A combined clinical and MRI approach for outcome assessment of traumatic head injured comatose patients. J Neurol 255(2):217–223

    Article  PubMed  Google Scholar 

  40. Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, Il'yasov KA (2006) Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 16(8):1651–1658

    Article  PubMed  Google Scholar 

  41. Jones DK, Dardis R, Ervine M, Horsfield MA, Jeffree M, Simmons A, Jarosz J, Strong AJ (2000) Cluster analysis of diffusion tensor magnetic resonance images in human head injury. Neurosurgery 47(2):306–313 discussion 313–304

    Article  CAS  PubMed  Google Scholar 

  42. Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27(1):5–11

    Article  PubMed  Google Scholar 

  43. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23(5):794–802

    PubMed  Google Scholar 

  44. Xu J, Rasmussen IA, Lagopoulos J, Haberg A (2007) Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 24(5):753–765

    Article  PubMed  Google Scholar 

  45. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 22(2):277–283

    CAS  PubMed  Google Scholar 

  46. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2(7872):81–84

    Article  CAS  PubMed  Google Scholar 

  47. Perlbarg V, Puybasset L, Tollard E, Lehericy S, Benali H, Galanaud D (2009) Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: A diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp in press

  48. Voss HU, Uluc AM, Dyke JP, Watts R, Kobylarz EJ, McCandliss BD, Heier LA, Beattie BJ, Hamacher KA, Vallabhajosula S, Goldsmith SJ, Ballon D, Giacino JT, Schiff ND (2006) Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116(7):2005–2011

    Article  CAS  PubMed  Google Scholar 

  49. Cecil KM, Hills EC, Sandel ME, Smith DH, McIntosh TK, Mannon LJ, Sinson GP, Bagley LJ, Grossman RI, Lenkinski RE (1998) Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg 88(5):795–801

    Article  CAS  PubMed  Google Scholar 

  50. Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39(1):53–60

    Article  CAS  PubMed  Google Scholar 

  51. Baslow MH, Hrabe J, Guilfoyle DN (2007) Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. J Mol Neurosci 32(3):235–245

    Article  CAS  PubMed  Google Scholar 

  52. Baslow MH, Suckow RF, Gaynor K, Bhakoo KK, Marks N, Saito M, Saito M, Duff K, Matsuoka Y, Berg MJ (2003) Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. Neuromolecular Med 3(2):95–104

    Article  CAS  PubMed  Google Scholar 

  53. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2):89–131

    Article  CAS  PubMed  Google Scholar 

  54. Cecil KM, Lenkinski RE, Meaney DF, McIntosh TK, Smith DH (1998) High-field proton magnetic resonance spectroscopy of a swine model for axonal injury. J Neurochem 70(5):2038–2044

    Article  CAS  PubMed  Google Scholar 

  55. Holshouser BA, Tong KA, Ashwal S, Oyoyo U, Ghamsary M, Saunders D, Shutter L (2006) Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 24(1):33–40

    Article  PubMed  Google Scholar 

  56. Signoretti S, Marmarou A, Fatouros P, Hoyle R, Beaumont A, Sawauchi S, Bullock R, Young H (2002) Application of chemical shift imaging for measurement of NAA in head injured patients. Acta Neurochir Suppl 81:373–375

    CAS  PubMed  Google Scholar 

  57. Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 17(1):1–15

    CAS  PubMed  Google Scholar 

  58. Wood SJ, Berger G, Velakoulis D, Phillips LJ, McGorry PD, Yung AR, Desmond P, Pantelis C (2003) Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull 29(4):831–843

    PubMed  Google Scholar 

  59. Lewine JD, Davis JT, Sloan JH, Kodituwakku PW, Orrison WW Jr (1999) Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR Am J Neuroradiol 20(5):857–866

    CAS  PubMed  Google Scholar 

  60. Bekinschtein T, Tiberti C, Niklison J, Tamashiro M, Carpintiero S, Villarreal M, Forcato C, Leiguarda R, Manes F (2005) Assessing level of consciousness and cognitive changes from vegetative state to full recovery. Neuropsychol Rehabil 15(3/4):307–322

    Article  PubMed  Google Scholar 

  61. Coleman MR, Davis MH, Rodd JM, Robson T, Ali A, Owen AM, Pickard JD (2009) Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 132(Pt 9):2541–2552

    Article  CAS  PubMed  Google Scholar 

  62. Coleman MR, Rodd JM, Davis MH, Johnsrude IS, Menon DK, Pickard JD, Owen AM (2007) Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130(10):2494–2507

    Article  PubMed  Google Scholar 

  63. Di HB, Yu SM, Weng XC, Laureys S, Yu D, Li JQ, Qin PM, Zhu YH, Zhang SZ, Chen YZ (2007) Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 68(12):895–899

    Article  CAS  PubMed  Google Scholar 

  64. Fernandez-Espejo D, Junque C, Vendrell P, Bernabeu M, Roig T, Bargallo N, Mercader JM (2008) Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj 22(11):882–890

    Article  PubMed  Google Scholar 

  65. Moritz CH, Rowley HA, Haughton VM, Swartz KR, Jones J, Badie B (2001) Functional MR imaging assessment of a non-responsive brain injured patient. Magn Reson Imaging 19(8):1129–1132

    Article  CAS  PubMed  Google Scholar 

  66. Staffen W, Kronbichler M, Aichhorn M, Mair A, Ladurner G (2006) Selective brain activity in response to one's own name in the persistent vegetative state. J Neurol Neurosurg Psychiatry 77(12):1383–1384

    Article  CAS  PubMed  Google Scholar 

  67. Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas F, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2005) Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 15(3–4):283–289

    Article  PubMed  Google Scholar 

  68. Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas P, Del Fiore G, Degueldre C, Franck G, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2004) Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61(2):233–238

    Article  PubMed  Google Scholar 

  69. Laureys S, Faymonville ME, Degueldre C, Fiore GD, Damas P, Lambermont B, Janssens N, Aerts J, Franck G, Luxen A, Moonen G, Lamy M, Maquet P (2000) Auditory processing in the vegetative state. Brain 123(8):1589–1601

    Article  PubMed  Google Scholar 

  70. Owen AM, Menon DK, Johnsrude IS, Bor D, Scott SK, Manly T, Williams EJ, Mummery C, Pickard JD (2002) Detecting residual cognitive function in persistent vegetative state. Neurocase 8(5):394–403

    Article  PubMed  Google Scholar 

  71. Boly M, Faymonville ME, Schnakers C, Peigneux P, Lambermont B, Phillips C, Lancellotti P, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2008) Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 7:1013–20

    Article  PubMed  Google Scholar 

  72. Menon DK, Owen AM, Williams EJ, Minhas PS, Allen CM, Boniface SJ, Pickard JD (1998) Cortical processing in persistent vegetative state. Lancet 352(9123):200

    Article  CAS  PubMed  Google Scholar 

  73. Schiff ND, Rodriguez-Moreno D, Kamal A, Kim KH, Giacino JT, Plum F, Hirsch J (2005) fMRI reveals large-scale network activation in minimally conscious patients. Neurology 64(3):514–523

    CAS  PubMed  Google Scholar 

  74. Laureys S, Perrin F, Faymonville ME, Schnakers C, Boly M, Bartsch V, Majerus S, Moonen G, Maquet P (2004) Cerebral processing in the minimally conscious state. Neurology 63(5):916–918

    CAS  PubMed  Google Scholar 

  75. Di H, Boly M, Weng X, Ledoux D, Laureys S (2008) Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin Med 8(5):502–507

    PubMed  Google Scholar 

  76. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  CAS  PubMed  Google Scholar 

  77. Raichle ME (2006) Neuroscience. The brain's dark energy. Science 314(5803):1249–1250

    Article  CAS  PubMed  Google Scholar 

  78. Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness. How conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129

    Article  CAS  PubMed  Google Scholar 

  79. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  CAS  PubMed  Google Scholar 

  80. Boly M, Phillips C, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Peigneux P, Faymonville ME, Maquet P, Laureys S (2008) Consciousness and cerebral baseline activity fluctuations. Hum Brain Mapp 29(7):868–874

    Article  PubMed  Google Scholar 

  81. Eickhoff SB, Dafotakis M, Grefkes C, Stocker T, Shah NJ, Schnitzler A, Zilles K, Siebler M (2008) fMRI reveals cognitive and emotional processing in a long-term comatose patient. Exp Neurol 214(2):240–246

    Article  CAS  PubMed  Google Scholar 

  82. Zhu J, Wu X, Gao L, Mao Y, Zhong P, Tang W, Zhou L (2009) Cortical activity after emotional visual stimulation in minimally conscious state patients. J Neurotrauma 26(5):677–688

    Article  PubMed  Google Scholar 

  83. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30(8):2393–2400

    Article  CAS  PubMed  Google Scholar 

  84. Cauda F, Micon BM, Sacco K, Duca S, D'Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80(4):429–431

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fonds de la Recherche Scientifique (FRS), European Commission (DISCOS, Mindbridge, DECODER & CATIA), Concerted Research Action (ARC-06/11-340), McDonnell Foundation, Mind Science Foundation. The authors thank the technicians of the Department of Neuroradiology of the Centre Hospitalier Universitaire, Liege, for their active participation in the MRI studies in comatose patients.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Laureys.

Additional information

Thibanda and Vanhaudenhuyse contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tshibanda, L., Vanhaudenhuyse, A., Boly, M. et al. Neuroimaging after coma. Neuroradiology 52, 15–24 (2010). https://doi.org/10.1007/s00234-009-0614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0614-8

Keywords

Navigation