Skip to main content
Log in

Control of Volume and Turgor in Stomatal Guard Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Water loss from plants is determined by the aperture of stomatal pores in the leaf epidermis, set by the level of vacuolar accumulation of potassium salt, and hence volume and turgor, of a pair of guard cells. Regulation of ion fluxes across the tonoplast, the key to regulation of stomatal aperture, can only be studied by tracer flux measurements. There are two transport systems in the tonoplast. The first is a Ca2+-activated channel, inhibited by phenylarsine oxide (PAO), responsible for the release of vacuolar K+(Rb+) in response to the “drought” hormone, abscisic acid (ABA). This channel is sensitive to pressure, down-regulated at low turgor and up-regulated at high turgor, providing a system for turgor regulation. ABA induces a transient stimulation of vacuolar ion efflux, during which the flux tracks the ion content (volume, turgor), suggesting ABA reduces the set-point of a control system. The second system, which is PAO-insensitive, is responsible for an ion flux from vacuole to cytoplasm associated with inward water flow following a hypo-osmotic transfer. It is suggested that this involves an aquaporin as sensor, and perhaps also as responder; deformation of the aquaporin may render it ion-permeable, or, alternatively, the deformed aquaporin may signal to an associated ion channel, activating it. Treatment with inhibitors of aquaporins, HgCl2 or silver sulfadiazine, produces a large transient increase in ion release from the vacuole, also PAO-insensitive. It is suggested that this involves the same aquaporin, either rendered directly ion-permeable, or signalling to activate an associated ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Alexandre J., Lassalles J.P. 1991. Hydrostatic and osmotic pressure gradient-activated channel in plant vacuole. Biophys. J. 60:1326–1336

    Article  Google Scholar 

  • Cessna S.G., Chandra P.S., Low P.S. 1998. Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J. Biol. Chem. 273:27286–27291

    Article  PubMed  CAS  Google Scholar 

  • Cho S.J., Sattar A.K., Jeong A.H., Satchi M., Cho J.A., Dash S., Mayes M.S., Stromer M.H., Jena B.F. 2002. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc. Natl. Acad. Sci. USA 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D.J., Hedrich R. 1991. Stretch-activated chloride, potassium and calcium channels co-existing in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  PubMed  CAS  Google Scholar 

  • Ehring G.R., Zampichi G., Horowitz J., Bok D. Hall J.E. 1990. Properties of channels reconstituted from the major intrinsic proteins of lens fibre membranes. J. Gen. Physiol. 96:631–664

    Article  PubMed  CAS  Google Scholar 

  • Findlay G.P. 2001. Membranes and the electrophysiology of turgor regulation. Aust. J. Biol. Sci. 28:617–634

    CAS  Google Scholar 

  • Goddard H., Manison N.F.H., Tomos D., Brownlee C. 2000. Elemental propagation of calcium signals in response-specific patterns determined by environmental stimulus strength. Proc. Natl. Acad. Sci. USA 97:1932–1937

    Article  PubMed  CAS  Google Scholar 

  • Hazama A., Kozono D., GugJ. Bigino W.F., Agre P., Yasui M. 2002. Ion permeation of AQP6 water channel protein. J. Biol. Chem. 277:29224–29230

    Article  PubMed  CAS  Google Scholar 

  • Hetherington A.M., Gray J.E., Leckie C.P., McAinsh M.R., Pical C., Priestley A.J., Staxen I., Webb A.A.R. 1998. The control of specificity in guard cell signal transduction. Phil. Trans. Roy. Soc. Lond. B 353:1489–1494

    Article  CAS  Google Scholar 

  • Hill A.E., Shachar-Hill B., Shachar-Hill Y. 2004. What are aquaporins for? J. Membrane Biol. 197:1–32

    Article  CAS  Google Scholar 

  • Lee S.H., Chung G.C., Steudle E. 2005. Low temperature and mechanical stresses differently gate aquaporins of root cortical cells of chilling-sensitive cucumber and -resistant figleaf gourd. Plant, Cell & Env. 28:1191–1202

    Article  CAS  Google Scholar 

  • Lee J.W., Zhang Y., Weaver C.D., Shomer N.H., Louis C.F., Toberts D.M. 1995. Phosphorylation of nodulin 26 on serine 262 affects its voltage-sensitive channel activity in planar lipid bilayers. J. Biol. Chem. 270:27051–27057

    Article  PubMed  CAS  Google Scholar 

  • Luu D.-T., Maurel C. 2005. Aquaporins in a changing environment: molecular gears for adjusting plant water status. Plant, Cell & Env. 28:85–96

    Article  CAS  Google Scholar 

  • MacRobbie E.A.C. 1981. Effects of ABA in ‘isolated’ guard cells of Commelina communis L. J. Exp. Bot. 32:563–572

    CAS  Google Scholar 

  • MacRobbie E.A.C. 1995. ABA-inducedion efflux in stomatal guard cells: multiple actions of ABA inside and outside the cell. Plant J. 7:565–576

    Article  CAS  Google Scholar 

  • MacRobbie E.A.C. 2000. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proc. Natl. Acad. Sci. USA 97:12361–12368

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie E.A.C. 2002. Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc. Natl. Acad. Sci. USA 99:11963–11968

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie, E.A.C. 2006. Osmotic effects on vacuolar ion release in guard cells. Proc. Natl. Acad. Sci. USA 103:1135–1140

    Article  PubMed  CAS  Google Scholar 

  • Matsuki M., Hashimoto S., Shimono M., Murakami M., Fugita-Yoshigaki J., Furuyama S., Sugiya H. 2005. Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J. Membrane Biol. 203:119–126

    Article  CAS  Google Scholar 

  • Moshelion M., Moran N., Chaumont F. 2004. Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiology 135:2301–2317

    Article  PubMed  CAS  Google Scholar 

  • Niemietz C.M., Tyermann S.D. 1997. Characterisation of water channels in wheat root membrane vesicles. Plant Physiol. 115:561–567

    PubMed  CAS  Google Scholar 

  • Niemietz C.M., Tyermann S.D. 2002. New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett. 531:443–447

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y., Tazawa M. 1990. Calcium ions and turgor regulation in plant cells. J. Membrane Biol. 114:189–194

    Article  CAS  Google Scholar 

  • Sarda X., Tousch D., Ferrare K., Legrand E., Dupuis J.M., Casse-Delbart F., Lamaze T. 1997. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J. 12:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K., Isobe M., Knight M.R., Trewavas A.J., Muto S. 1997. Hypo-osmotic shock induces increases in cytoplasmic Ca2+ in tobacco suspension-culture cells. Plant Physiol. 113:587–694

    PubMed  CAS  Google Scholar 

  • Taylor A.R., Manison N.F.H., Fernandez C., Wood J., Brownlee C. 1996. Spatial organization of calcium signalling. Plant Cell. 8:2015–2031

    Article  PubMed  CAS  Google Scholar 

  • Tyerman S.D., Bohnert H.J., Maurel C., Steudle E., Smith J.A.C. 1999. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50:1055–1071

    Article  CAS  Google Scholar 

  • Vandeleur R., Niemietz C., Tilbrook J., Tyerman S.D. 2005. Role of aquaporins in root responses to irrigation. Plant & Soil 274:141–161

    Article  CAS  Google Scholar 

  • Wan X., Steudle E., Hartung W. 2004. Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses : effects of ABA and of HgCl2. J. Exp. Bot. 55:411–422

    Article  PubMed  CAS  Google Scholar 

  • Weaver C.D., Shomer N.H., Louis C.F., Roberts D.M. 1994. Nodulin 26, a nodule-specific symbiosome membrane protein from soybean is an ion channel. J. Biol. Chem. 269:17858–17862

    PubMed  CAS  Google Scholar 

  • Yasui M., Hazama A., Kwon T.-H., Nielsem S., Guggino W.B., Agre P. 1999. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187

    Article  PubMed  CAS  Google Scholar 

  • Ye Q., Muhr J., Steudle E. 2005. A cohesion/tension model for the gating of aquaporins allows the estimation of water channel pore volumes in Chara. Plant Cell Env. 28:525–535

    Article  CAS  Google Scholar 

  • Ye Q., Wiera B., Steudle E. 2004. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentrations. J. Exp. Bot. 55:449–461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Technical help from John Banfield is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enid A.C. MacRobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacRobbie, E.A. Control of Volume and Turgor in Stomatal Guard Cells. J Membrane Biol 210, 131–142 (2006). https://doi.org/10.1007/s00232-005-0851-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0851-7

Keywords

Navigation