Skip to main content
Log in

Heat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effects

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Dufour and Soret effects on flow at a stagnation point in a fluid-saturated porous medium are studied in this paper. A two dimensional stagnation-point flow with suction/injection of a Darcian fluid is considered. By using an appropriate similarity transformation, the boundary layer equations of momentum, energy and concentration are reduced to a set of ordinary differential equations, which are solved numerically using the Keller-box method, which is a very efficient finite differences technique. Nusselt and Sherwood numbers are obtained, together with the velocity, temperature and concentration profiles in the boundary layer. For the large suction case, asymptotic analytical solutions of the problem are obtained, which compare favourably with the numerical solutions. A critical view of the problem is presented finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C :

Concentration

C p :

Specific heat at constant pressure

C s :

Concentration susceptibility

D f :

Dufour number

D m :

Mass diffusivity

f :

Dimensionless stream function

f w :

Suction/injection parameter

K :

Darcy permeability

k T :

Thermal diffusion ratio

Le :

Lewis number, α m /D m

N :

Buoyancy ratio (sustentation) parameter

Ra x :

Local Rayleigh number

u, v :

Darcian velocities in the x and y-direction, respectively

U 0 :

Reference velocity

v w :

Suction/injection velocity

S :

Shape factor

Sh :

Sherwood number

T :

Temperature

x, y:

Cartesian co-ordinates along and normal to the body surface, respectively

α m :

Thermal diffusivity

β T :

Coefficient of thermal expansion

β C :

Coefficient of concentration expansion

ϕ :

Dimensionless concentration

μ :

Dynamic viscosity

ν :

Kinematic viscosity

θ :

Dimensionless temperature

ρ :

Density

ψ :

Stream function

w :

Condition at the wall

∞:

Condition at infinity

′:

Differentiation with respect to η

References

  1. Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

    MATH  Google Scholar 

  2. Ingham D, Pop I (eds) (1998) Transport phenomena in porous Media I. Pergamon, Oxford

    MATH  Google Scholar 

  3. Ingham D, Pop I (eds) (2002) Transport phenomena in porous Media II. Pergamon, Oxford

    MATH  Google Scholar 

  4. Ingham D, Pop I (eds) (2005) Transport phenomena in porous Media III. Pergamon, Oxford

    Google Scholar 

  5. Hiemenz K (1911) Die Grenzschicht in dem Fluessigkeitstroemungen eingetauchten geraden Kreizylinder. Dingl Polytech J 32:321–410

    Google Scholar 

  6. Eckert ERG (1942) Die Berechnung der Waermebergangs in der laminaren Grenzschicht umstroemter Koerper. VDI Forschungsheft 416:1–23

    MathSciNet  Google Scholar 

  7. Raptis AA, Takhar HS (1987) Flow through a porous medium. Mech Res Commun 14:327–329

    Article  MATH  Google Scholar 

  8. Pop I, Merkin JH (1987) Three-dimensional Darcian free convection near a stagnation point on an isothermal surface. Transp Porous Med 2:357–362

    Article  Google Scholar 

  9. Merkin JH, Mahmood T (1998) Convective flows and reactive surfaces in porous media. Transp Porous Med 33:279–293

    Article  MathSciNet  Google Scholar 

  10. Merkin JH, Pop I (2000) Free convection near a stagnation point in a porous medium resulting from oscillatory wall temperature. Int J Heat Mass Transf 43:611–621

    Article  MATH  Google Scholar 

  11. Rees DAS, Pop I (2001) The effect of g-jitter on free convection near a stagnation point in a porous medium. Int J Heat Mass Transf 44:877–883

    Article  MATH  Google Scholar 

  12. Soret C (1880) Influence de la temperature sur la distribution des sels dans leurs solutions. CR Acad Sci Paris 91:289–291

    Google Scholar 

  13. Benano-Melly LB, Caltagirone JP, Faissat B, Montel F, Costeseque P (2001) Modelling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int J Heat Mass Transf 44:1285–1297

    Article  MATH  Google Scholar 

  14. Anghel M, Takhar HS, Pop I (2000) Dufour and Soret effects on free convection boundary-layer over a vertical surface embedded in a porous medium. Studia Universitatis Babes-Bolyai, Mathematica XLV:11–22

    MathSciNet  MATH  Google Scholar 

  15. Postelnicu A (2004) Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int J Heat Mass Transf 47:1467–1472

    Article  MATH  Google Scholar 

  16. Postelnicu A (2007) Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int J Heat Mass Transf 43:595–602

    Article  Google Scholar 

  17. Partha MK, Murthy PVSN, Raja Sekhar GP (2006) Soret and Dufour effects in a non-Darcy porous medium. Trans ASME J Heat Mass Transf 128:605–610

    Article  Google Scholar 

  18. Lakshmi Narayana PA, Murthy PVSN (2007) Soret and Dufour effects in a doubly stratified Darcy porous medium. J Porous Media 10:613–624

    Article  Google Scholar 

  19. Afify A (2007) Effects of thermal-diffusion and diffusion-thermo on non-Darcy MHD free convective heat and mass transfer past a vertical isothermal surface embedded in a porous medium with thermal dispersion and temperature-dependent viscosity. Appl Math Modell 31:1621–1634

    Article  MATH  Google Scholar 

  20. Afifi AA (2007) Effects of temperature-dependent viscosity with Soret and Dufour numbers on non-Darcy MHD free convective heat and mass transfer past a vertical surface embedded in a porous medium. Transp Porous Media 66:391–401

    Article  Google Scholar 

  21. Tsai R, Huang JS (2009) Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface. Int J Heat Mass Transf 52:2399–2406

    Article  MATH  Google Scholar 

  22. Tsai R, Huang JS (2009) Numerical study of Soret and Dufour effects on heat and mass transfer from natural convection flow over a vertical porous medium with variable wall heat fluxes. Comput Mater Sci 47:23–30

    Article  Google Scholar 

  23. Chamkha AJ, Ben-Nakhi A (2008) MHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effects. Int J Heat Mass Transf 44:845–856

    Article  Google Scholar 

  24. Beg OA, Bakier AY, Prasad VR (2009) Numerical study of magnetohydrodynamic heat and mass transfer from a stretching surface to a porous medium with Soret and Dufour effects. Comput Mater Sci 46:57–65

    Article  Google Scholar 

  25. Nazar R, Amin N, Pop I (2004) Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium. Int J Heat Mass Transf 47:2681–2688

    Article  MATH  Google Scholar 

  26. Merrill K, Beauchesne M, Paullet J, Weidman P (2006) Final steady flow near a stagnation point on a vertical surface in a porous medium. Int J Heat Mass Transf 49:4681–4686

    Article  MATH  Google Scholar 

  27. Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Yih KA (1999) Coupled heat and mass transfer by natural convection adjacent to a permeable horizontal cylinder in a saturated porous medium. Int Comm Heat Mass Transf 26:431–440

    Article  Google Scholar 

  29. Balasuriya S, Gottwald G, Hornibrook J, Lafortune S (2007) High Lewis number combustion wavefronts: a perturbative Melnikov analysis. SIAM J Appl Math 67:464–486 (MR 2285873)

    Article  MathSciNet  MATH  Google Scholar 

  30. Edwards B, Wilder J, Showalter K (1991) Onset of convection for autocatalytic reaction fronts: laterally unbounded system. Phys Rev A 43:749

    Article  Google Scholar 

  31. Jones JC (2008) A possible analog of the Lewis number for gases in a porous medium. J Fire Sci 26:213–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Postelnicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postelnicu, A. Heat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effects. Heat Mass Transfer 46, 831–840 (2010). https://doi.org/10.1007/s00231-010-0633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0633-3

Keywords

Navigation