Skip to main content
Log in

3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0–16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C p :

Pressure drop coefficient, 2(pinp)/ρ u 2in

D :

Tube diameter (m)

E :

Electric field strength (V m−1)

f :

Fanning friction factor, 2·(p in p)/ρ u 2in H/4L

f 0 :

Fanning friction factor for flow without EHD

F E :

EHD (N m−3)

g :

Acceleration due to gravity (m s−2)

h :

Heat transfer coefficient (W m−2 °C−1)

\(\bar h\) :

Average heat transfer coefficient (W m−2°C−1)

H :

Fin spacing (m)

i :

Current density (A m−2)

j :

Colburn factor \(\overline {{\text{Nu}}} /\left( {\operatorname{Re} \Pr ^{1/3} } \right)\)

j 0 :

Colburn factor for flow without EHD

k :

Thermal conductivity (W m−1°C−1)

L :

Flow length (m)

n :

Direction normal to the surface

Nu:

Local Nusselt number, h·H/k

\(\overline {{\text{Nu}}}\) :

Average Nusselt number, \(\bar h \cdot H/k\)

P :

Pressure (Pa)

Pr:

Prandtl number, ν/α

q :

Electric charge density (Cm−3)

Re:

Reynolds number, Uin·H

S L :

Tube pitch for longitudinal direction (m)

S T :

Tube pitch for transverse direction (m)

T w :

Wall temperature (K)

T :

Temperature (K)

T b :

Bulk mean temperature (K)

T in :

Inlet temperature (K)

U in :

Frontal velocity (m s−1)

u :

Fluid velocity (m s−1)

V :

Voltage (V)

V E :

Voltage at wire electrode (V)

X, Y, Z:

Coordinates

α:

Thermal diffusivity (m2 s−1)

ɛ:

Fluid permittivity (F m−1)

σE:

Electrical conductivity ( m−1)

ρ:

Fluid density (kg m−3)

ν:

Kinematic viscosity (m2 s−1)

μ:

Dynamic viscosity (N s m−1)

Θ:

Dimensionless temperature, (TTin)/(T w Tin)

Θb:

Dimensionless bulk mean temperature, (TbTin)/(TwTin)

0:

Without electric field

→:

vectors

References

  1. Ishiguro H, Nagata S, Yabe A, Nariai H (1991) Augmentation of forced-convection heat transfer by applying electric fields to disturb flow near a wall. ASME J 3:25–31

    Google Scholar 

  2. Kulacki FA (1983) In: Kakac S (ed.), Augmentation of low reynolds number forced convection channel flow by electrostatic discharge, in low Reynolds number flow heat exchangers. Hemisphere, Washington, pp 753–782

  3. Landau LD, Lifshitz EM (1963) Electrohydrodynamics of continuous media. Pergamon, New York

    Google Scholar 

  4. Mase GE (1970) Continuum mechanics. McGraw-Hill, New York

    Google Scholar 

  5. Nelson DA, Ohadi MM, Zia S, Whipple RL (1991) Electrostatic effects on heat transfer and pressure drop in cylindrical geometries. ASME J 3:33–39

    Google Scholar 

  6. Ogata J, Iwafuji Y, Shimada Y, Yamazaki T (1992) Boiling heat transfer enhancement in tube-bundle evaporators utilizing electric field effects. ASHRAE Trans 98(2): 435–444

    Google Scholar 

  7. Ohadi MM, Nelson DA, Zia S (1991) Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. Heat Mass Transfer J 4:1175–1187

    Google Scholar 

  8. Ohadi MM, Webber JM, Kim SW, Whipple RL (1991) Effect of humidity, temperature and pressure on corona discharge characteristics and heat transfer enhancements in a tube. ASME J 3:15–24

    Google Scholar 

  9. Ohadi MM, Faani M, Papar R, Rademacher R, Ng T (1992) EHD heat transfer enhancement of shell-side boiling heat transfer coefficients of R-123/Oil Mixture. ASHRAE Trans 98(2): 427–434

    Google Scholar 

  10. Owsenek BL, Seyed-Yagoobi J, Page RH (1995) Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plat. Heat Transfer J 117:309–315

    Google Scholar 

  11. Pantaker SV (1981) A calculation procedure for two dimensional elliptic problem. Numeric Heat Transfer 4:409–426

    Google Scholar 

  12. Poulter R, Allen PHG (1986) Electrohydrodynamically augmented heat and mass transfer in the shell/tube heat exchanger. In: Proceedings of the 8th international heat transfer conference, San Francisco, pp 2963–2968

  13. Tada Y, Takimoto A, Hayashi Y (1991) Heat transfer enhancement in a convective field by applying ionic wind. ASME J 3:9–14

    Google Scholar 

  14. Wangnippanto S, Tiansuwan J, Jiracheewanun S, Wang CC, Kiatsiriroat T (2001) Air side performance of thermosyphon heat exchanger in low reynolds number region with and without electric field. Energy Conserv Manage 43:1791–1800

    Google Scholar 

  15. Webb RL (1994) Principles of enhanced heat transfer. Wiley, New York

    Google Scholar 

  16. Yabe A (1991) Active heat transfer enhancement by applying electric fields. ASME J 3: xv-xxiii

    Google Scholar 

  17. Yabe A, Mori Y, Hijikata K (1978) EHD study of the corona wind between wire and plate electrode. AIAA J 16(4): 340–345

    Google Scholar 

  18. Yabe A, Mori Y, Hijikata K (1987) Heat transfer enhancement techniques utilizing electric fields. Heat Transfer High Technol Power Engineer: 394–405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiin-Yuh Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CW., Jang, JY. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement. Heat Mass Transfer 41, 583–593 (2005). https://doi.org/10.1007/s00231-004-0540-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0540-6

Keywords

Navigation