Skip to main content

Advertisement

Log in

Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RP, Gomez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141

    Article  Google Scholar 

  • Araujo MB, New M (2007) Ensemble forecasting of species distribution. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Araujo MB, Pearson RG, Thuillier W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513

    Article  Google Scholar 

  • Araujo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Google Scholar 

  • Brown LC, Duguay CR (2010) The response and role of ice cover in lake-climate interactions. Prog Phys Geogr 34:671–704

    Article  Google Scholar 

  • Buisson L, Thuiller W, Lek S, Li P, Grenouillet G (2008) Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14:2232–2248

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157

    Article  Google Scholar 

  • Burgmer T, Hillebrand H, Pfenninger M (2007) Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93–103

    Article  CAS  Google Scholar 

  • Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581

    Article  Google Scholar 

  • Cordellier M, Pfenninger M (2008) Climate-driven range dynamics in the freshwater limpet Ancylus fluviatilis (Pulmonata, Basommatophora). J Biogeogr 35:1580–1592

    Article  Google Scholar 

  • Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18:534–544

    Article  CAS  Google Scholar 

  • Dépraz A, Cordellier M, Hausser J, Pfenninger M (2008) Postglacial recolonisation at a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using model selection. Mol Ecol 17:2449–2462

    Article  Google Scholar 

  • Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710

    Article  CAS  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann G, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton MJ, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Figuerola J, Green AJ, Michot TC (2005) Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat 165:274–280

    Article  Google Scholar 

  • Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat Sci 69:568–574

    Article  Google Scholar 

  • Gates DM (1993) Climate change and its biological consequences. Sinauer Associates, Sunderland

    Google Scholar 

  • Glöer P (2002) Mollusca I. Süßwassergastropoden Nord—und Mitteleuropas Bestimmungsschlüssel, Lebensweise, Verbreitung. ConchBooks, Hackenheim

    Google Scholar 

  • Glöer P, Meier-Brook C (1998) Süßwassermollusken, Hamburg

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  Google Scholar 

  • Guisan A, Thuillier W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Garrett KA, Huaman Z, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14:1755–1765

    Article  Google Scholar 

  • Horak P, Kolarova L (2011) Snails, waterfowl and cercarial dermatitis. Freshw Biol 56:779–790

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jablonski D, Finarelli JA (2009) Congruence of morphologically-defined genera with molecular phylogenies. Proc Natl Acad Sci USA 106:8262–8266

    Article  CAS  Google Scholar 

  • Jarne P, Städler T (1995) Population genetic structure and mating system evolution in freshwater pulmonates. Cell Mol Life Sci 51:482–497

    Article  CAS  Google Scholar 

  • Köckemann B, Buschmann H, Leuschner C (2009) The relationships between abundance, range size and niche breadth in Central European tree species. J Biogeogr 36:854–864

    Article  Google Scholar 

  • Lydeard C, Holznagel WE, Schnare MN, Gutell RR (2000) Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Mol Phylogenet Evol 15:83–102

    Article  CAS  Google Scholar 

  • Malone CR (1965) Killdeer (Charadrius vociferus Linnaeus) as a means of dispersal for aquatic gastropods. Ecology 46:551–552

    Article  Google Scholar 

  • Marten A, Brändle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651

    Article  CAS  Google Scholar 

  • Martinez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13:305–314

    Article  Google Scholar 

  • Martins EP (2004) COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. Department of Biology, Indiana University, Bloomington

  • Nakicenovic N (2000) Greenhouse gas emissions scenarios. Technol Forecast Soc Chang 65:149–166

    Article  Google Scholar 

  • Økland J (1990) Lakes and snails: environment and gastropoda in 1500 Norwegian lakes, ponds and rivers. U.B.S./Dr. W. Backhuys, Oegstgeest

    Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605

    Article  Google Scholar 

  • Peterson AT, Holt RD (2003) Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol Lett 6:774–782

    Article  Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  Google Scholar 

  • Pfenninger M, Staubach S, Albrecht C, Streit B, Schwenk K (2003) Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal form-group Ancylus fluviatilis (O.F. Müller, 1774). Mol Ecol 12:2731–2745

    Article  CAS  Google Scholar 

  • Pfenninger M, Cordellier M, Streit B (2006) Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol Biol 6:100

    Article  Google Scholar 

  • Pfenninger M, Nowak C, Magnin F (2007) Intraspecific range dynamics and niche evolution in Candidula land snail species. Biol J Linn Soc 90:303–317

    Article  Google Scholar 

  • Pfenninger M, Salinger M, Haun T, Feldmeyer B (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail Radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 11:135

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc B Biol Sci 268:1–7

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rice NH, Martinez-Meyer E, Peterson AT (2003) Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol J Linn Soc 80:369–383

    Article  Google Scholar 

  • Roy K, Hunt G, Jablonski D, Krug AZ, Valentine JW (2009) A macroevolutionary perspective on species range limits. Proc R Soc B Biol Sci 276:1485–1493

    Article  Google Scholar 

  • Ruegg K, Hijmans RJ, Moritz C (2006) Climate change and the origin of migratory pathways in the Swainson’s Thrush, Catharus ustulatus. J Biogeogr 33:1172–1182

    Article  Google Scholar 

  • Skov F, Svenning JC (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • van der Schalie H, Berry E (1973) The effects of temperature on growth and reproduction of aquatic snails. Sterkiana 50:1–92

    Google Scholar 

  • Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2011) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  Google Scholar 

  • Williams G, Layman KL, Stefan HG (2004) Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Reg Sci Technol 40:145–164

    Article  Google Scholar 

  • Woodward G, Hildrew AG (2002) Food web structure in riverine landscapes. Freshw Biol 47:777–798

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed at the University of Frankfurt and at the Biodiversity and Research Centre. We thank K. Kuhn, R. Kraus, H. Geupel and S. Trumic for technical assistance. C. Albrecht kindly provided samples. We thank also the curators R. Janssen, J. Ablett, T. Backeljau, Z. Fehér, K. Edlinger and late M. Gosteli for access to museum collections. L. Sonesten and J. Økland helped with the use of existing databases. O. Tackenberg and I. Marzolff helped with the use of ArcView and with other GIS-related issues. The work received financial support within the AQUASHIFT DFG priority program (Grant MP390/4-1 to 4-3) and from the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pfenninger.

Additional information

Communicated by U. Sommer.

Appendix

Appendix

 

Species

NCBI sequence COI

NCBI sequence 16S

Acroloxus lacustris

AY282581

EF489311

Ancylus fluviatilis

AY282582

EF489312

Aplexa hypnorum

AY577504

AY577464

Bathyomphalus contortus

EF012166

EF012184

Galba truncatula

DQ980189

Acc. Numb to be provided

Gyraulus albus

Y14710

AY577480

Hippeutis complanatus

EF012170

EF012187

Lymnea stagnalis

EF489390

EF489314

Myxas glutinosa

DQ980191

Acc. Numb to be provided

Omphalaria gla

DQ980192

 

Physa acuta

AY282589

AY651219

Physa fontinalis

AY577505

AY577465

Planorbarius corneus

AY282590

AY577473

Planorbis planorbis

EF012175

AY350568

Segmentina nitida

EF012178

AY577481

Stagnicola palustris

Acc. Numb to be provided

U82082

Radix sp. 1

DQ980134

Acc. Numb to be provided

Radix sp. 2

DQ980142

Acc. Numb to be provided

Radix sp. 3

DQ980120

Acc. Numb to be provided

Radix sp. 4

DQ980141

Acc. Numb to be provided

Radix sp. 5

DQ980082

Acc. Numb to be provided

Radix sp. 6

DQ980125

Acc. Numb to be provided

Siphonaria serrata

EF489380

EF489302

Anisus vortex

AY577518

AY577478

Anisus leucostoma

AY577517

AY577477

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordellier, M., Pfenninger, A., Streit, B. et al. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar Biol 159, 2519–2531 (2012). https://doi.org/10.1007/s00227-012-1894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1894-9

Keywords

Navigation