Skip to main content
Log in

Seasonal and interannual variations in size, biomass and chemical composition of the eggs of North Sea shrimp, Crangon crangon (Decapoda: Caridea)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In the shrimp Crangon crangon, an important fishery resource and key species in the southern North Sea, we studied temporal variations in size, biomass (dry weight, W) and chemical composition (C, N, protein and lipid) of eggs in an initial embryonic stage. Data from 2 years, 1996 and 2009, consistently revealed that egg size and biomass varied seasonally, with maxima at the beginning of the reproductive season (January), decreasing values throughout spring, minima in June–July, and a slight increase thereafter. This cyclic pattern explains why “Winter eggs” are on average larger and heavier than “summer eggs”. Using a modelling approach, we estimated the duration of oogenesis in relation to seasonally changing seawater temperatures. According to an additive model of multiple explanatory variables, the C content per newly laid egg showed in both years a highly significant negative relationship with day length (r² = 0.38 and 0.40, respectively; P < 0.0001), a weak positive relationship with temperature (r² = 0.08 and 0.09; P < 0.05), and a weak negative relationship with phytoplankton biomass (r² = 0.11 and 0.12; P < 0.05) at the estimated time of beginning oogenesis. Phenotypic plasticity in initial egg size and biomass is interpreted as an adaptive reproductive trait that has evolved in regions with strong seasonality in plankton production and periods of larval food limitation. In contrast to biomass per egg, the percentage chemical composition remained similar throughout the reproductive period. Both the absolute and percentage values also showed significant interannual variations, which caution against generalizations based on short-term studies of reproductive traits of C. crangon and other species of shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelló P, Valladares FJ, Castellón A (1988) Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar Biol 98:39–49

    Article  Google Scholar 

  • Allen RM, Buckley YM, Marshall DJ (2008) Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. Am Nat 171:225–237

    Article  Google Scholar 

  • Andresen H, van der Meer J (2010) Brown shrimp (Crangon crangon, L.) functional response to density of different sized juvenile bivalves Macoma balthica (L.). J Exp Mar Biol Ecol 390:31–38

    Article  Google Scholar 

  • Anger K (1983) Temperature and the larval development of Hyas araneus L. (Decapoda: Majidae); extrapolation of laboratory data to field conditions. J Exp Mar Biol Ecol 69:203–215

    Article  Google Scholar 

  • Anger K (2001) The biology of decapod crustacean larvae. Crustacean issues, vol 14. Balkema, Lisse

    Google Scholar 

  • Anger K, Harms J (1990) Elemental (CHN) and proximate biochemical composition of decapod crustacean larvae. Comp Biochem Physiol B 97:69–80

    Article  Google Scholar 

  • Anger K, Moreira GS, Ismael D (2002) Comparative size, biomass, elemental composition (C, H, N), and energy concentration of caridean shrimp eggs. Invertebr Reprod Dev 42:83–93

    Article  CAS  Google Scholar 

  • Anger K, Thatje S, Lovrich G, Calcagno J (2003) Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithotid crab from high latitudes. Mar Ecol Prog Ser 253:243–251

    Article  Google Scholar 

  • Arcos FG, Ibarra AM, Palacios E, Vazquez-Boucard C, Racotta IS (2003) Feasible predictive criteria for reproductive performance of white shrimp Litopenaeus vannamei: egg quality and female physiological condition. Aquaculture 228:335–349

    Article  Google Scholar 

  • Arthur W (2000) Intraspecific variation in developmental characters: the origin of evolutionary novelties. Am Zool 40:811–818

    Article  Google Scholar 

  • Attard J, Hudon C (1987) Embryonic development and energetic investment in egg production in relation to size of female lobster (Homarus americanus). Can J Fish Aquat Sci 44:1157–1164

    Article  Google Scholar 

  • Bas C, Spivak E, Anger K (2007) Seasonal and interpopulational variability in fecundity, egg size, and elemental composition (CHN) of eggs and larvae in a grapsoid crab, Chasmagnathus granulatus. Helgol Mar Res 61:225–237

    Article  Google Scholar 

  • Boddeke R (1971) The influence of strong 1969 and 1970 year-classes of cod on the stock of brown shrimp along the Netherlands coast in 1970 and 1971. ICES CM 1971/K:32:1–12

  • Boddeke R (1982) The occurence of winter and summer eggs in the brown shrimp (Crangon crangon) and the pattern of recruitment. Neth J Sea Res 16:151–162

    Article  Google Scholar 

  • Bomirski A, Klęk E (1974) Action of eyestalks on ovary in Rhithropanopeus harrisii and Crangon crangon (Crustacea- Decapoda). Mar Biol 24:329–337

    Article  Google Scholar 

  • Botsford LW (1991) Crustacean egg production and fisheries management. In: Wenner A, Kuris A (eds) Crustacean egg production. Balkema, Rotterdam, pp 379–394

    Google Scholar 

  • Brante A, Cifuentes S, Pörtner H, Arntz W, Fernández M (2004) Latitudinal comparison of reproductive traits in five Brachyuran species along the Chilean coast. Rev Chil Hist Nat 77:15–27

    Article  Google Scholar 

  • Campos J, Van der Veer H, Freitas V, Kooijman S (2009) Contribution of different generations of the brown shrimp Crangon crangon (L.) in the Dutch Wadden Sea to commercial fisheries: a dynamic energy budget approach. J Sea Res 62:106–113

    Article  Google Scholar 

  • Campos J, Bio A, Cardoso JFMF, Dapper R, Witte JIJ, van der Veer HW (2010) Fluctuations of brown shrimp Crangon crangon abundance in the western Dutch Wadden Sea. Mar Ecol Prog Ser 405:203–219

    Article  Google Scholar 

  • Cequier-Sánchez E, Rodriguez C, Ravelo AG, Zarate R (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem 56:4297–4303

    Article  CAS  Google Scholar 

  • Clarke A (1993) Reproductive trade-offs in caridean shrimps. Funct Ecol 7:411–419

    Article  Google Scholar 

  • Criales MM (1985) Untersuchungen zur Larvalentwicklung von Crangon crangon L. und Crangon allmanni Kinahan (Decapoda, Natantia, Caridea). Dissertation, University of Kiel, Germany

  • Criales MM, Anger K (1986) Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgoländer Meeresunters 40:241–265

    Article  Google Scholar 

  • Díaz H (1980) The mole crab Emerita talpoida (Say): a case of changing life history pattern. Ecol Monogr 50:437–456

    Article  Google Scholar 

  • Drake P, Arias AM, Rodríguez A (1998) Seasonal and tidal abundance patterns of decapods crustacean larvae in a shallow inlet (SW Spain). J Plankton Res 20:585–601

    Article  Google Scholar 

  • Fischer S, Thatje S (2008) Temperature-induced oviposition in the brachyuran crab Cancer setosus along a latitudinal cline: aquaria experiments and analysis of field data. J Exp Mar Biol Ecol 357:157–164

    Article  Google Scholar 

  • Fischer S, Thatje S, Brey T (2009) Early eggs traits in Cancer setosus (Decapoda, Brachyura): effects of temperature and female size. Mar Ecol Prog Ser 377:193–202

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Gebauer P, Paschke K, Anger K (2010) Seasonal variation in the nutritional vulnerability of first-stage larval porcelain crab, Petrolisthes laevigatus (Anomura: Porcellanidae) in southern Chile. J Exp Mar Biol Ecol 386:103–112

    Article  Google Scholar 

  • Ghiselin M (1987) Evolutionary aspects of marine invertebrate reproduction. In: Giese A, Pearse J, Pearse V (eds) Reproduction of marine invertebrates, vol IX. Blackwell, California, pp 609–665

    Google Scholar 

  • Giménez L (2006) Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integr Comp Biol 46:615–622

    Article  Google Scholar 

  • Giménez L (2010) Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91:1401–1413

    Article  Google Scholar 

  • Giménez L, Anger K, Torres G (2004) Linking life history traits in successive phases of a complex life cycle: effects of larval biomass on early juvenile development in an estuarine crab, Chasmagnathus granulata. Oikos 104:570–580

    Article  Google Scholar 

  • González-Gordillo JI, dos Santos A, Rodríguez A (2001) Checklist and an annotated bibliography of decapod crustacea larvae from the southwestern European coast (Gibraltar Strait area). Scientia Marina 65:275–305

    Article  Google Scholar 

  • Gunnarsson B, Asgeirsson PH, Ingolfsson A (2007) The rapid colonization by Crangon crangon (Linnaeus, 1758) (Eucarida, Caridea, Crangonidae) of Icelandic coastal waters. Crustaceana 80:747–753

    Article  Google Scholar 

  • Hadfield M, Strathmann M (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19:323–334

    Google Scholar 

  • Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18

    Article  Google Scholar 

  • Havinga B (1930) Der Granat (Crangon vulgaris Fabr.) in den hollandischen Gewassern. J Cons Int Explor Mer 5:57–87

    Google Scholar 

  • Henderson PA, Holmes RHA (1987) On the population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridea) in the Severn Estuary and Bristol Channel. J Mar Biol Assoc UK 67:825–847

    Article  Google Scholar 

  • Hines A (1986a) Larval patterns in the life histories of brachyuran crabs (Crustacea, Decapoda, Brachyura). Bull Mar Sci 39:444–466

    Google Scholar 

  • Hines A (1986b) Larval problems and perspectives in life histories of marine invertebrates. Bull Mar Sci 39:506–525

    Google Scholar 

  • Hufnagl M, Temming A, Dänhardt A (2010) Hermaphroditism in brown shrimp: lessons from field data and modelling. Mar Biol 157:2097–2108

    Article  Google Scholar 

  • ICES (2009) Report of the Working Group on Crangon Fisheries and Life History (WGCRAN). 10–13 May 2009, Oostende, Belgium. ICES CM 2009/LRC:07 12:1–63

  • Jacobs JR, Biesiot PM, Perry HM, Trigg C (2003) Biochemical composition of embryonic blue crabs Callinectes sapidus Rathbun 1896 (Crustacea: Decapoda) from the Gulf of Mexico. Bull Mar Sci 72:311–324

    Google Scholar 

  • Jaeckle WB (1995) Variation in the size, energy content and biochemical composition of invertebrate eggs: correlates to the mode of larval development. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 49–78

    Google Scholar 

  • Jalihal DR, Sankolli KN, Shenoy S (1993) Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana 65:365–376

    Article  Google Scholar 

  • Jónasdóttir SH, Trung NH, Hansen F (2005) Egg production and hatching success of the Calanoid copepods Calanus helgolandicus and Calanus finmarchicus in the North Sea from March to September 2001. J Plankton Res 27:1239–1259

    Article  Google Scholar 

  • Kattner G, Wehrtmann IS, Merck T (1994) Interannual variations of lipids and fatty acids during larval development of Crangon spp. in the German Bight, North Sea. Comp Biochem Physiol 107B:103–110

    CAS  Google Scholar 

  • Kattner G, Graeve M, Calcagno JA, Lovrich GA, Thatje S, Anger K (2003) Lipid, fatty acid and protein utilization during lecithotrophic larval development of Lithodes santolla (Molina) and Paralomis granulosa (Jacquinot). J Exp Mar Biol Ecol 292:61–74

    Article  CAS  Google Scholar 

  • Kuipers BR, Dapper R (1984) Nursery function of Wadden Sea tidal flats for the brown shrimp Crangon crangon. Mar Ecol Prog Ser 17:171–181

    Article  Google Scholar 

  • Laptikhovsky V (2006) Latitudinal and bathymetric trends in egg size variation: a new look at Thorson’s and Rass’s rules. Mar Ecol 27:7–14

    Article  Google Scholar 

  • Lardies MA, Castilla JC (2001) Latitudinal variation in the reproductive biology of the commensal crab Pinnaxodes chilensis (Decapoda: Pinnotheridae) along the Chilean coast. Mar Biol 139:1125–1133

    Article  Google Scholar 

  • Levin LA, Bridges TS (1995) Pattern and diversity in reproduction and development. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 1–48

    Google Scholar 

  • Linck BM (1995) Einfluß von Temperatur und Salzgehalt auf die Larven der Nordseegarnele Crangon crangon. Master thesis, University of Oldenburg, Germany

  • Lowry D, Rosenberg N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marshall DJ, Allen RM, Crean AJ (2008) The ecological and evolutionary importance of maternal effects in the sea. Oceanogr Mar Bio Annu Rev 46:203–250

    Article  Google Scholar 

  • Meixner R (1969) Wachstum, Häutung und Fortpflanzung von Crangon crangon (L.) bei. Einzelaufzucht. Ber Dt Wiss Kommn Meerersforsch 20:93–111

    Google Scholar 

  • Meredith SS (1952) A study of Crangon vulgaris in the Liverpool Bay area. Proc Trans Liverp Biol Soc 58:75–109

    Google Scholar 

  • Meusy JJ, Payen GG (1988) Female reproduction in Malacostracan Crustacea. Zool Sci 5:217–265

    Google Scholar 

  • Miller CB, Tande KS (1993) Stage duration estimation for Calanus populations, a modelling study. Mar Ecol Prog Ser 102:15–34

    Article  Google Scholar 

  • Moland E, Moland OE, Stenseth NC (2010) Maternal influences on offspring size variation and viability in wild European lobster Homarus gammarus. Mar Ecol Prog Ser 400:165–173

    Article  Google Scholar 

  • Moran AL, McAlister JS (2009) Egg Size as a life history character of marine invertebrates: is it all it’s cracked up to be? Biol Bull 216:226–242

    Google Scholar 

  • Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, pp 279–321

    Google Scholar 

  • Murphy NP, Austin CM (2005) Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium (Crustacea: Decapoda: Palaemonidae): biogeography, taxonomy and the convergent evolution of abbreviated larval development. Zool Script 34:187–197

    Article  Google Scholar 

  • Neudecker T, Damm U (1992) Seasonality of egg-bearing shrimp (Crangon crangon L.) in coastal waters of the German Bight. ICES CM K 28:1–9

  • O’Leary Amsler M, George R (1984) Seasonal variation in the biochemical composition of the embryos of Callinectes sapidus Rathbun. J Crustac Biol 4:546–553

    Article  Google Scholar 

  • Oh CW, Hartnoll RG (2004) Reproductive biology of the common shrimp Crangon crangon (Decapoda: Crangonidae) in the central Irish Sea. Mar Biol 144:303–316

    Article  Google Scholar 

  • Oh CW, Hartnoll RG, Nash RDM (1999) Population dynamics of the common shrimp Crangon crangon (L.), in Port Erin Bay, Isle of Man, Irish Sea. Ices J Mar Sci 56:718–733

    Article  Google Scholar 

  • Oh CW, Hartnoll RG, Nash RDM (2001) Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Mar Ecol Prog Ser 214:211–223

    Article  Google Scholar 

  • Ouellet P, Allard J (2002) Seasonal and interannual variability in larval lobster Homarus americanus size, growth and condition in the Magdalen Islands, southern Gulf of St. Lawrence. Mar Ecol Prog Ser 230:241–251

    Article  Google Scholar 

  • Ouellet P, Plante F (2004) An investigation of the sources of variability in American lobster (Homarus americanus) eggs and larvae: female size and reproductive status, and interannual and interpopulation comparisons. J Crustac Biol 24:481–495

    Article  Google Scholar 

  • Pan M, Pierce G, Cunningham C, Hay S (2011) Spatiotemporal coupling/decoupling of planktonic larvae and benthic settlement in decapods in the Scottish east coast. Mar Biol 158:31–46

    Article  Google Scholar 

  • Paschke K (1998) Untersuchungen zum Energiestoffwechsel während der Embryonalentwicklung der Nordsee Garnele Crangon crangon (Linnaeus 1758) (Decapoda: Caridea). Dissertation, University of Hamburg, Germany

  • Paschke KA, Gebauer P, Buchholz F, Anger K (2004) Seasonal variation in starvation resistance of early larval North Sea shrimp Crangon crangon (Decapoda: Crangonidae). Mar Ecol Prog Ser 279:183–191

    Article  Google Scholar 

  • Pechenik JA (2006) Larval experience and latent effects: metamorphosis is not a new beginning. Integr Comp Biol 46:323–333

    Article  Google Scholar 

  • Petersen S, Anger K (1997) Chemical and physiological changes during the embryonic development of the spider crab, Hyas araneus L. (Decapoda: Majidae). Comp Biochem Physiol 117B:299–306

    CAS  Google Scholar 

  • Plagmann J (1939) Ernahrungsbiologie der Garnele (Crangon vulgaris Fabr.). Helgol Wiss Meeresunters 2:113–162

    Article  Google Scholar 

  • Pond DW, Harris RP, Head RN, Harbour D (1996) Environmental and nutritional factors determining seasonal variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters off Plymouth. UK. Mar Ecol Prog Ser 143:45–63

    Article  Google Scholar 

  • Salonen K, Sarvala J, Hakala I, Viljamen ML (1976) The relation of energy and organic carbon in aquatic invertebrates. Limnol Oceanogr 21:724–730

    Article  CAS  Google Scholar 

  • Sastry AN (1983) Ecological aspects of reproduction. In: Vernberg FJ, Vernberg WB (eds) The biology of Crustacea; environmental adaptations. Academic Press, New York, pp 79–270

    Google Scholar 

  • Sato T, Suzuki N (2010) Female size as a determinant of larval size, weight, and survival period in the coconut crab, Birgus latro. J Crustac Biol 30:624–628

    Article  Google Scholar 

  • Siegel V, Damm U, Neudecker T (2008) Sex-ratio, seasonality and long-term variation in maturation and spawning of the brown shrimp Crangon crangon (L.) in the German Bight (North Sea). Helgol Mar Res 62:339–349

    Article  Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506

    Article  Google Scholar 

  • Sokal R, Rohlf J (1995) Biometry, 3rd edn. W. H. Freeman, New York

    Google Scholar 

  • Spaargaren DH (2000) Seasonal, annual variations in the catches of Crangon crangon (L., 1758(Decapoda, Natantia) near the coast of texel, The Netherlands. Crustaceana 73:547–563

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Steele DH, Steele VJ (1975) Egg size and duration of embryonic development in crustacea. Int Rev ges Hydrobiol 60:711–715

    Article  Google Scholar 

  • Temming A, Damm U (2002) Life cycle of Crangon crangon in the North Sea: a simulation of the timing of recruitment as a function of the seasonal temperature signal. Fish Oceanogr 11:45–58

    Article  Google Scholar 

  • Thatje S, Lovrich G, Torres G, Hagen W, Anger K (2004) Changes in biomass, lipid, fatty acid and elemental composition during the abbreviated larval development of the subantartic shrimp Campylonotus vagans. J Exp Mar Biol Ecol 301:159–174

    Article  CAS  Google Scholar 

  • Tian T, Merico A, Su J, Staneva J, Wiltshire K, Wirtz K (2009) Importance of resuspended sediment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem. J Sea Res 62:214–228

    Article  Google Scholar 

  • Tiews K (1954) Die biologischen Grundlagen der Büsumer Garnelenfischerei. Ber Dtsch Wiss Komm Meeresforsch 13:235–269

    Google Scholar 

  • Tiews K (1970) Synopsis of biological data on the common shrimp Crangon crangon (Linnaeus, 1758). FAO Fish Rep 57:1167–1224

    Google Scholar 

  • Torres G, Giménez L, Anger K (2007) Effects of osmotic stress on crustacean larval growth and protein and lipid levels are related to life-histories: The genus Armases as a model. Comp Biochem Physiol B 148:209–224

    Article  CAS  Google Scholar 

  • Turner RL, Lawrence JM (1979) Volume and composition of echinoderm eggs: implications for the use of egg size in life history models. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 25–40

    Google Scholar 

  • Underwood AJ, Keough MJ (2001) Supply-side ecology: the nature and consequences of variations in recruitment of intertidal organisms. In: Bertness DM, Gaines SD, Hay EM (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 183–200

    Google Scholar 

  • Viegas I, Martinho F, Neto J, Pardal M (2007) Population dynamics, distribution and secondary production of the brown shrimp Crangon crangon (L.) in a Southern European Estuary. Latitudinal variations. Scientia Marina 71:451–460

    Article  Google Scholar 

  • Wear RG (1974) Incubation in British decapod crustacea, and the effects of temperature on the rate and success of embryonic development. J Mar Biol Ass UK 54:745–762

    Article  Google Scholar 

  • Webb JB, Eckert GL, Shirley TC, Tamone SL (2007) Changes in embryonic development and hatching in Chionoecetes opilio (Snow Crab) with variation in incubation temperature. Biol Bull 213:67–75

    Article  Google Scholar 

  • Wehrtmann IS (1991) How important are starvation periods in early larval development for survival of Crangon septemspinosa larvae? Mar Ecol Prog Ser 73:183–190

    Article  Google Scholar 

  • Wehrtmann IS, Kattner G (1998) Changes in volume, biomass, and fatty acids of developing eggs in Nauticaris magellanica (Decapoda: Caridea): a latitudinal comparison. J Crustac Biol 18:413–422

    Article  Google Scholar 

  • Wenner A, Kuris A (1991) Crustacean egg production. Crustacean issues, vol 7. Balkema, Lisse

    Google Scholar 

  • Wiltshire KH, Malzahn AM, Greve W, Wirtz K, Janisch S, Mangelsdorf P, Manly B, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Ocean 53:1294–1302

    Article  Google Scholar 

  • Winberg GG (1971) Methods for the estimation of production of aquatic animals. Academic Press, London

    Google Scholar 

  • Wood SN (2006) Generalized additive models. An introduction. R. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Wu X, Cheng Y, Zeng C, Wang C, Cui Z (2010) Reproductive performance and offspring quality of the first and the second brood of female swimming crab, Portunus trituberculatus. Aquaculture 303:94–100

    Article  Google Scholar 

  • Zöllner N, Kirsch K (1962) Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoide) gemeinsamen Sulphophosphovanillin-Reaktion. Z Gesamte Exp Med 135:545–561

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Graham SM (2007) Analysing ecological data (Statistics for Biology and Health). Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank the crews of R.V. “Uthörn” and “Aade” for capture and transporting live shrimps to Helgoland, Uwe Nettelmann helped in the maintenance of the animals; Cornelia Püschel, Bettina Oppermann and Julia Haafke made elemental analyses. We also thank two anonymous reviewers for constructive criticism and helpful suggestions. AU and KP were financially supported by the Deutscher Akademischer Austauschdienst (DAAD, Bonn, Germany). AU also thanks the support of the Comisión Nacional de Ciencia y Tecnología, CONICYT (Santiago de Chile), funding this study as a part of his doctoral dissertation. The experiments comply with animal manipulation laws in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Urzúa.

Additional information

Communicated by X. Irigoyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urzúa, Á., Paschke, K., Gebauer, P. et al. Seasonal and interannual variations in size, biomass and chemical composition of the eggs of North Sea shrimp, Crangon crangon (Decapoda: Caridea). Mar Biol 159, 583–599 (2012). https://doi.org/10.1007/s00227-011-1837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1837-x

Keywords

Navigation