Skip to main content
Log in

Chlorophyll fluorescence as a proxy for microphytobenthic biomass: alternatives to the current methodology

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pulse amplitude modulated (PAM) fluorescence has been used as a proxy of microphytobenthic biomass after a dark adaptation period of 15 min to stabilise the minimum fluorescence yield (F 15 o ). This methodology was investigated for in situ migratory and ex situ engineered non-migratory biofilms, comparing dark adaptation to low (5% ambient) and far-red light treatments over different emersion periods. Far-red and low light reduced potential errors resulting from light history effects, by reversal of non-photochemical quenching after 5 min of treatment, compared to over 10 min required by conventional dark adaptation. An in situ decline of minimum fluorescence yield over 15 min was observed during the dark adaptation for migratory biofilms, but was not observed in the non-migratory biofilms indicating that the major cause of decline was downward vertical migration of cells into the sediment. This pattern occurred in far-red light after 10 min, but not for the low light treatment, indicating that low light maintained the biomass at the surface of the sediment. It is therefore concluded that low light treatment is a better option than conventional dark adaptation for the measurement of minimum fluorescence as a proxy of microphytobenthic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

F o , F 5 o , F 10 o , F 15 o :

Minimum fluorescence yield after 10 s and after 5, 10 and 15 min of treatment, respectively

F m , F 5 m , F 10 m , F 15 m :

Maximum fluorescence yield after a saturating pulse, after 10 s and after 5, 10 and 15 min of treatment, respectively

F v /F m , F 5 v /F 5 m , F 10 v /F 10 m , F 15 v /F 15 m :

PSII photochemical efficiency after a saturating pulse, after 10 s or 5, 10 and 15 min of treatment, respectively

NPQ:

Non-photochemical fluorescence quenching

PPFD:

Photosynthetic photon flux density

PSII:

Photosystem II

References

  • Barranguet C, Kromkamp J (2000) Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. Mar Ecol Prog Ser 204:39–52

    Article  CAS  Google Scholar 

  • Blanchard GF, Chrétiennot-Dinet MJ, Dinet A, Robert J-M (1988) Methode simplifiée pour l’extraction du microphytobenthos des sédiments marins par le gel de silice Ludox. Compt Rend Acad Sci Paris 307:569–576

    Google Scholar 

  • Brotas V, Cabrita T, Portugal A, Serôdio J, Catarino F (1995) Spatio-temporal distribution of the microphytobenthic biomass in intertidal flats of Tagus estuary (Portugal). Hydrobiologia 300/301:93–104

    Article  Google Scholar 

  • Caron L, Berkaloff C, Duval JC, Jupin H (1987) Chlorophyll fluorescence transients from the diatom Phaeodactylum tricornutum: relative rates of cyclic phosphorylation and chlororespiration. Photosynth Res 11:131–139

    Article  CAS  Google Scholar 

  • Casper-Lindley C, Bjorkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289

    Article  CAS  Google Scholar 

  • Consalvey M, Jesus B, Perkins RG, Brotas V, Underwood GJC, Paterson DM (2004) Monitoring migration and measuring biomass in benthic biofilms: the effects of dark/far-red adaptation and vertical migration on fluorescence measurements. Photosynth Res 81:91–101

    Article  CAS  Google Scholar 

  • Consalvey M, Perkins RG, Underwood GJC, Paterson DM (2005) PAM Fluorescence: A beginners guide for benthic diatomists. Diatom Res 20:1–22

    Article  Google Scholar 

  • Dau H, Hansen UP (1988) The involvement of spillover changes in State 1-State 2 transitions in intact leaves at low light intensities. Biochim BiophysActa 934:156–159

    Article  CAS  Google Scholar 

  • Defew EC, Perkins RG, Paterson DM (2004) The influence of light and temperature interaction on a natural estuarine microphytobenthic assemblage. Biofilms 1:21–30

    Article  Google Scholar 

  • Eaton JW, Moss B (1966) The estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr 11:584–595

    Article  Google Scholar 

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62:344–359

    Article  CAS  Google Scholar 

  • Ford RB, Honeywill C (2002) Grazing on intertidal microphytobenthos by macrofauna: is pheophorbide a a useful marker. Mar Ecol Prog Ser 229:33–42

    Article  CAS  Google Scholar 

  • Forster RM, Kromkamp JC (2004) Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Mar Ecol Prog Ser 284:9–22

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Hagerthey SE, Defew EC, Paterson DM (2002) Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Mar Ecol Prog Ser 245:47–59

    Article  Google Scholar 

  • Honeywill C, Paterson DM, Hagerthey SE (2002) Instant determination of microphytobenthic biomass using fluorescence. Eur J Phycol 37:485–492

    Article  Google Scholar 

  • Jakob T, Whilhelm C (1999) Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82

    Article  CAS  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced acumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390

    Article  CAS  Google Scholar 

  • Jesus B, Brotas V, Marani M, Paterson DM (2005) Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar Coast Shelf Sci 60:30–42

    Article  Google Scholar 

  • Jesus B, Perkins RG, Consalvey M, Brotas V, Paterson DM (2006) How does migrations by benthic microalgae affect fluorescence measurements of photophysiology? Mar Ecol Prog Ser (in press)

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. Vol. 2/1 of Süsswasser flora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Vol. 2/2 of Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Vol. 2/3 of Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Erg¨anzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis. Vol. 2/4 of Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, Jena

  • Kromkamp J, Barranguet C, Peene J (1998) Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar Ecol Prog Ser 162:45–55

    Article  CAS  Google Scholar 

  • Lavaud J, Rosseau B, Etienne A (2002) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166

    Article  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne A-L (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Article  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. i. distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labelling study. Limnol Oceanogr 45:1224–1234

    Article  CAS  Google Scholar 

  • Mouget J-L, Rosa P, Tremblin G (2004) Acclimation of Haslea ostrearia to light of different spectral qualities—confirmation of ‘chromatic adaptation’ in diatoms. J Photochem Photobio B 75:1–11

    Article  CAS  Google Scholar 

  • Müller P, Li X, Niyogi K (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Olaizola M, Laroche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357–370

    Article  CAS  Google Scholar 

  • Oxborough K, Hanlon ARM, Underwood GJC, Baker NR (2000) In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. Limnol Oceanogr 45:1420–1425

    Article  Google Scholar 

  • Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr 34:223–234

    Article  Google Scholar 

  • Perkins RG, Underwood GJC, Brotas V, Snow GC, Jesus B, Ribeiro L (2001) Responses of microphytobenthos to light: primary production and carbohydrate allocation over an emersion period. Mar Ecol Prog Ser 223:101–112

    Article  Google Scholar 

  • Perkins RG, Oxborough K, Hanlon ARM, Underwood GJC, Baker NR (2002) Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Mar Ecol Prog Ser 228:47–56

    Article  CAS  Google Scholar 

  • Round FE (1981) The ecology of the algae, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruban A, Lavaud J, Rosseau B, Guglielmi G, Etienne A (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:65–175

    Article  Google Scholar 

  • Serôdio J (2003) A chlorophyll fluorescence index to estimate short-term rates of photosynthesis by intertidal microphytobenthos. J Phycol 39:33–46

    Article  Google Scholar 

  • Serôdio J (2004) Analysis of variable chlorophyll fluorescence in microphytobenthos assemblages: implications of the use of depth-integrated measurements. Aquat Microb Ecol 36:137–152

    Article  Google Scholar 

  • Serodio J, Catarino F (2000) Modelling the primary productivity of intertidal microphytobenthos: time scales of variability and effects of migratory rhythms. Mar Ecol Prog Ser 192:13–30

    Article  Google Scholar 

  • Serôdio J, Silva JM, Catarino F (1997) Non destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Serôdio J, Silva JM, Catarino F (2001) Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar Ecol Prog Ser 218:45–61

    Article  Google Scholar 

  • Snoeijs P (1993) Intercalibration and distribution of diatom species in the Baltic Sea, vol 1. Opulus Press, Uppsala

  • Snoeijs P, Balashova J (1998) Intercalibration and distribution of diatom species in the Baltic Sea. Opulus Press, Uppsala

    Google Scholar 

  • Snoeijs P, Kasperoviciene J (1996) Intercalibration and distribution of diatom species in the Baltic Sea, vol 4. Opulus Press, Uppsala

  • Snoeijs P, Potapova M (1995) Intercalibration and distribution of diatom species in the Baltic Sea, vol 3. Opulus Press, Uppsala

  • Snoeijs P, Vilbaste S (1994) Intercalibration and distribution of diatom species in the Baltic Sea, vol 2. Opulus Press, Uppsala

  • Ting CS, Owens TG (1993) Photochemical and nonphotochemical fluorescence quenching processes in the diatom Pheodactylum tricornutum. Plant Physiol 101:1323–1330

    Article  CAS  Google Scholar 

  • Underwood GJC (2002) Adaptations of tropical marine microphytobenthic assemblages along a gradient of light and nutrient availability in Suva Lagoon, Fiji. Eur J Phycol 37:449–462

    Article  Google Scholar 

  • Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153

    Article  CAS  Google Scholar 

  • Underwood GJC, Nilsson CN, Sundbäck K, Wlff A (1999) Short-term effects of UVB radiation on chlorophyll fluorescence, biomass, pigments, and carbohydrate fractions in a benthic diatom mat. J Phycol 35:656–666

    Article  CAS  Google Scholar 

  • Witkowski A, Lange-Bertalot H, Ditmar M (2000) Diatom flora of marine coasts. Iconographia Diatomologica, vol 7. Verlag K.G. Rugell

Download references

Acknowledgments

B. Jesus was funded by a PhD grant from FCT (Praxis XXI BD21634/99) and a Post Doctoral grant (POCI BPD/20993/2004). This work was also funded by the HIMOM project (Contract n° EVK3-2001-00043 I). The authors thank L. Ribeiro for the valuable help with diatom identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jesus.

Additional information

Communicated by M. Kühl, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesus, B., Perkins, R.G., Mendes, C.R. et al. Chlorophyll fluorescence as a proxy for microphytobenthic biomass: alternatives to the current methodology. Mar Biol 150, 17–28 (2006). https://doi.org/10.1007/s00227-006-0324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0324-2

Keywords

Navigation