Skip to main content
Log in

Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria)

Marine Biology Aims and scope Submit manuscript

Abstract

The distribution and genetic structure of many marine invertebrates in the North Atlantic have been influenced by the Pleistocene glaciation, which caused local extinctions followed by recolonization in warmer periods. Mitochondrial DNA markers are typically used to reconstruct species histories. Here, two mitochondrial markers [16S rDNA and cytochrome c oxidase I (COI)] were used to study the evolution of the widely distributed hydrozoan Obelia geniculata (Linnaeus, 1758) from the North Atlantic and the Pacific and, more specifically, in the context of North Atlantic phylogeography. Samples were collected from six geographic localities between 1998 and 2002. Hydroids from the North Atlantic, North Pacific (Japan), and South Pacific (New Zealand) are reciprocally monophyletic and may represent cryptic species. Using portions of the 16S rDNA and COI genes and the date of the last trans-Arctic interchange (3.1–4.1 million years ago), the first calibrated rate of nucleotide substitutions in hydrozoans is presented. Whereas extremely low substitution rates have been reported in other cnidarians, mainly based on anthozoans, substitution rates in O. geniculata are comparable to other invertebrates. Despite a life history that ostensibly permits substantial dispersal, there is apparently considerable genetic differentiation in O. geniculata. Divergence estimates and the presence of unique haplotypes provide evidence for glacial refugia in Iceland and New Brunswick, Canada. A population in Massachusetts, USA, appears to represent a relatively recent colonization event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge

  • Berrill NJ (1948) A new method of reproduction in Obelia. Biol Bull (Woods Hole) 95:94–99

    Google Scholar 

  • Billard A (1904) Contribution a l’étude des hydroids (multiplication, regeneration, greffes, variations). Ann Sc Nat Zool 20:1–251

    Google Scholar 

  • Bodo F, Bouillon J (1968) Étude histologique du développement embryonnaire de quelques hydromédusas de Roscoff: Phialidium hemisphaericum (L.), Obelia sp. Péron et Lesueur, Sarsia exima (Allman), Podocoryne carnea (Sars), Gonionemus vertens Agassiz. Cah Biol Mar 9:69–104

    Google Scholar 

  • Boero F, Bouillon J (1993) Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biol J Linn Soc 48:239–266

    Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from the mitochondrial genome structure. Proc Natl Acad Sci USA 89:8750–8753

    Google Scholar 

  • Bridge D, Cunningham CW, DeSalle R, Buss LW (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12:679–689

    Google Scholar 

  • Briggs JC (1970) A faunal history of the North Atlantic. Syst Zool 19:19–34

    Google Scholar 

  • Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3:102–113

    Google Scholar 

  • Cornelius PFS (1975) The hydroid species of Obelia (Coelenterata, Hydrozoa, Campanulariidae), with notes on the medusa stage. Bull Br Mus Nat Hist (Zool Ser) 28:249–293

    Google Scholar 

  • Cornelius PFS (1990) European Obelia (Cnidaria, Hydrozoa): systematics and identification. J Nat Hist 24:535–578

    Google Scholar 

  • Cornelius PFS (1992) Medusa loss in leptolid Hydrozoa (Cnidaria), hydroid rafting, and abbreviated life-cycles among their remote-island faunae: an interim review. In: Bouillon J, Boero F, Cicogna F, Gili JM, Hughes RG (eds) Aspects of hydrozoan biology. Sci Mar 56:245–261

    Google Scholar 

  • Cornelius PFS (1995) North-west European thecate hydroids and their medusae, part 2. Sertulariidae to Campanulariidae. Synop Br Fauna New Ser 50:1–386

    Google Scholar 

  • Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochem Syst Ecol 21:57–69

    Google Scholar 

  • Cunningham CW, Collins TM (1998) Beyond area relationships: extinction and recolonization in molecular marine biogeography. In: Schierwater B, Streit B, Wagner G, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser, Basel, Switzerland, pp 297–321

  • Cunningham CW, Buss LW, Anderson C (1991) Molecular and geologic evidence of shared history between hermit crabs and the symbiotic genus Hydractinia. Evolution 45:1301–1306

    Google Scholar 

  • Dahlgren TG, Weinberg JR, Halanych KM (2000) Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar Biol 137:487–495

    Google Scholar 

  • Dawson AG (1992) Ice age earth: late quaternary geology and climate. Routledge, New York

    Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull (Woods Hole) 200:92–96

    Google Scholar 

  • Durham JW, MacNeil FS (1967) Cenozoic migrations of marine invertebrates through the Bering Strait region. In: Hopkins DM (ed) The Bering land bridge. Stanford University Press, Stanford, Calif., USA, pp 326–349

  • Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    Google Scholar 

  • France SC, Hoover LL (2001) Analysis of variation in mitochondrial DNA sequences (ND3, ND4L, MSH) among Octocorallia (=Alcyonaria) (Cnidaria: Anthozoa). Bull Biol Soc Wash 10:110–118

    Google Scholar 

  • France SC, Hoover LL (2002) DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471:149–155

    Google Scholar 

  • Franz DR, Merrill AS (1980a) Molluscan distribution patterns on the continental shelf of the Middle Atlantic Bight (Northwest Atlantic). Malacologia 19:209–225

    Google Scholar 

  • Franz DR, Merrill AS (1980b) The origins and determinants of distribution of molluscan faunal groups on the shallow continental shelf of the northwest Atlantic. Malacologia 19:227–248

    Google Scholar 

  • Gladenkov AY, Oleinik AE, Marincovich Jr L, Barinov KB (2002) A refined age for the earliest opening of the Bering Strait. Palaeogeogr Palaeoclimatol Palaeoecol 183:321–328

    Google Scholar 

  • Hamner WM, Hamner PP, Strand SW (1994) Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar Biol 119:347–356

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Google Scholar 

  • Hoeh WR, Stewart DT, Sutherland BW, Zouros E (1996) Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia). Mol Biol Evol 13:418–421

    Google Scholar 

  • Holder K, Montgomerie R, Friesen VL (1999) A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53:1936–1950

    Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232

    Google Scholar 

  • Ingolfsson A (1992) The origin of the rocky shore fauna of Iceland and the Canadian Maritimes. J Biogeogr 19:705–712

    Google Scholar 

  • Ingolfsson A (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol 122:13–21

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B Biol Sci 265:2257–2263

    Google Scholar 

  • Kramp PL (1927) The hydromedusae of Danish waters. K Dan Vidensk Selsk Biol Skr 8:1–291

    Google Scholar 

  • Maddison WP, Maddison DR (2000) MacClade: analysis of phylogeny and character evolution, ver. 4.0. Sinauer, Sunderland, Mass., USA

  • Marincovich Jr L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151

    Google Scholar 

  • Marincovich Jr L, Gladenkov AY (2001) New evidence for the age of the Bering Strait. Quat Sci Rev 20:329–335

    Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    Google Scholar 

  • Palumbi SR, Kessing BD (1991) Population biology of the trans-Arctic exchange: mtDNA sequence similarity between Pacific and Atlantic sea urchins. Evolution 45:1790–1805

    Google Scholar 

  • Panteleeva NN (1999) Obelia longissima (Pallas, 1766) and Obelia geniculata (L., 1758) (Hydrozoa, Thecaphora, Campanulariidae) in the Barents Sea. Morphology, distribution, ecology and special life history features. Zoosyst Rossica Suppl 1:51–65

    Google Scholar 

  • Pielou EC (1991) After the ice age. University of Chicago Press, Chicago

  • Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavalier-Smith T, Clark-Walker GD (1995) A coral mitochondrial MutS gene. Nature 375:109–111

    Google Scholar 

  • Pont-Kingdon G, Okada NA, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavalier-Smith T, Clark-Walker GD, Wolstenholme DR (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46:419–431

    Google Scholar 

  • Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Google Scholar 

  • Ralph PM (1956) Variation in Obelia geniculata (Linnaeus, 1758) and Silicularia bilabiata (Coughtrey, 1875) (Hydroida, f. Campanulariidae). Trans R Soc NZ 84:279–296

    Google Scholar 

  • Rogerson RJ (1983) Geological evolution. In: South RG (ed) Biogeography and ecology of the island of Newfoundland. Junk, The Hague, The Netherlands

  • Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45:397–411

    Google Scholar 

  • Saillard J, Forster P, Lynnerup N, Bandelt H, Norby S (2000) MtDNA variation among Greenland eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718–726

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, ver. 2.000. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Schubart CD, Diesel R, Hedges SB (1998) Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365

    Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Google Scholar 

  • Siegert MJ (2001) Ice sheets and Late Quaternary environmental change. Wiley, Chichester, England

  • Snell TL, Foltz DW, Sammarco PW (1998) Variation in morphology vs conservation of a mitochondrial gene in Montastraea cavernosa (Cnidaria, Scleractinia). Gulf Mexico Sci 16:188–195

    Google Scholar 

  • Sommer C (1992) Larval biology and dispersal of Eudendrium racemosum (Hydrozoa, Eudendriidae). In: Bouillon J, Boero F, Cicogna F, Gili JM, Hughes RG (eds) Aspects of hydrozoan biology. Sci Mar 56:205–211

    Google Scholar 

  • Stam WT, Bot PVM, Boele-Bos SA, van Rooij JM, van den Hoek C (1988) Single-copy DNA–DNA hybridizations among five species of Laminaria (Phaeophyceae): phylogenetic and biogeographic implications. Helgol Meeresunters 42:251–267

    Google Scholar 

  • Swofford DL (2000) PAUP* (phylogenetic analysis using parsimony). Sinauer, Sunderland, Mass., USA

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Torroni A, Bandelt H, D’Urbano L, Lahermo P, Moral P, Sellitto D, Rengo C, Forster P, Savontaus M, Bonne-Tamir B, Scozzari R (1998) MtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am J Hum Genet 62:1137–1152

    Google Scholar 

  • Van den Hoek C, Breeman AM (1990) Seaweed biogeography of the North Atlantic: where are we now? In: Garbary DJ, South GR (eds) Evolutionary biogeography of marine algae in the North Atlantic. NATO ASI Ser G22, Springer, New York Berlin Heidelberg, pp 55–87

  • Van Oppen MJH, Draisma SGA, Olsen JL, Stam WT (1995) Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar Biol 123:179–188

    Google Scholar 

  • Van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lond B Biol Sci 266:179–183

    Google Scholar 

  • Vermeij G (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281–307

    Google Scholar 

  • Wares JP (2001) Patterns of speciation inferred from mitochondrial DNA in North American Chthamalus (Cirripedia: Balanomorpha: Chthamaloidea). Mol Phylogenet Evol 18:104–116

    Google Scholar 

  • Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55:2455–2469

    Google Scholar 

  • Wares JP, Goldwater DS, Kong BY, Cunningham CW (2002) Refuting a controversial case of human-mediated marine species introduction. Ecol Lett 5:577–584

    Google Scholar 

  • Young AMC, Torres JE, Mack JE, Cunningham CW (2002) Morphological and genetic evidence for vicariance and refugium in the Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066

    Google Scholar 

Download references

Acknowledgements

We are grateful to P. Schuchert, L.-A. Henry, Y. Hirano, and B. Grossman for providing specimens, and to F. Boero, L. Madin, J. Pineda, and T. Shank for helpful comments. This work was supported by an NSF PEET grant to C. Cunningham (DEB-9978131) and an Ocean Life Institute fellowship to K.M. Halanych. This is WHOI Contribution number 11181. The experiments comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Govindarajan.

Additional information

Communicated by J.P. Grassle, New Brunswick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindarajan, A.F., Halanych, K.M. & Cunningham, C.W. Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Marine Biology 146, 213–222 (2005). https://doi.org/10.1007/s00227-004-1434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-004-1434-3

Keywords

Navigation