Skip to main content
Log in

Sibling species or poecilogony in the polychaete Scoloplos armiger?

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In marine invertebrates multiple modes of development, or poecilogony, may occur in a single species. However, after close examination, many of such putative cases turned out to be sibling species. A case in point may be the cosmopolitan orbiniid polychaete Scoloplos armiger, which inhabits marine shallow sediments. In addition to the well-known direct, holobenthic development from egg cocoons, pelagic larvae have also been described. Our culture experiments revealed a spatially segregated source of the two developmental modes. All females of an intertidal population produced egg cocoons and no pelagic larvae. All but 2 out of 15 females of an adjacent subtidal population produced pelagic larvae and no egg cocoons. Based on these results we performed a molecular genetic analysis (RAPD-PCR) on three intertidal and four subtidal populations in the North Sea. Selected samples from all sites were analysed also by the AFLP method. We found significantly higher genetic diversity within subtidal than within intertidal populations. This is consistent with a wider dispersal by pelagic larvae and a smaller effective population size when development is holobenthic. Total genetic divergence is not related to distance but to the intertidal/subtidal division. We suggest that S. armiger actually represents two sibling species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Anderson DT (1959) The embryology of the polychaete Scoloplos armiger. Q J Microsc Sci 100:69–166

    Google Scholar 

  • Armonies W (1999) Drifting benthos and long-term research: why community monitoring must cover a wide spatial scale. Senckenb Marit 29[Suppl]:13–18

    Google Scholar 

  • Baoling W, Peiyuan Q, Songling Z (1988) Morphology, reproduction, ecology and isozyme electrophoresis of Capitella complex in Quindao. Acta Oceanol Sin 7:442–458

    Google Scholar 

  • Bastrop R, Juerss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103

    CAS  PubMed  Google Scholar 

  • Blake JA (1980) The larval development of Polychaeta from the northern California coast. IV. Leitoscoloplos pugettensis and Scoloplos acmeceps (family Orbiniidae). Ophelia 19:1–18

    Google Scholar 

  • Bouchet P (1989) A review of poecilogony in gastropods. J Molluscan Stud 55:67–78

    Google Scholar 

  • Burton RS, Feldman MW (1982) Population genetics of coastal and estuarine invertebrates: does larval behaviour influence population structure? In: Kennedy VS (ed) Estuarine comparisons. Academic, New York, pp 537–551

  • Bussell JD (1999) The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol Ecol 8:775–789

    CAS  Google Scholar 

  • Butman CA, Grassle JP (1992) Active habitat selection by Capitella sp. I larvae. I. Two-choice experiments in still water and flume flows. J Mar Res 50:669–715

    Google Scholar 

  • Cabioch L, L'Hardy JP, Rullier F (1968) Inventaire de la faune marine de Roscoff. Annélides. Trav Stn Biol Roscoff 17:1–95

    Google Scholar 

  • Chalmers KJ, Waugh R, Sprent JI, Simons AJ, Powell W (1992) Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472

    PubMed  Google Scholar 

  • Crisp DJ (1978) Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia B, Beardmore JA (eds) Marine organisms: genetics, ecology, and evolution. Plenum, New York, pp 257–273

    Google Scholar 

  • De Groot GJ (1907) Aaanteekenigen over de ontwikkelung van Scoloplos armiger. Dissertation, University of Leiden, Leiden

  • Engelen AH, Olsen JL, Breeman AM, Stam WT (2001) Genetic differentiation in Sargassum polyceratium (Fucales: Phaeophyceae) around the island of Curaçao (Netherlands Antilles). Mar Biol 139:267–277

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Gätje C, Reise K (1998) Ökosystem Wattenmeer, Austausch-, Transport- und Stoffumwandlungsprozesse. Springer, Berlin Heidelberg New York

  • Giangrande A (1997) Polychaete reproductive patterns, life cycles and life histories: an overview. Oceanogr Mar Biol Annu Rev 35:323–386

    Google Scholar 

  • Giard AC (1905) La poecilogonie. In: Proceedings of the 6th international congress of zoology. Bern, pp 617–646

  • Gibbs PE (1968) Observations on the population of Scoloplos armiger at Whitstable. J Mar Biol Assoc UK 48:225–254

    Google Scholar 

  • Gibson G, Paterson I, Taylor H, Woolridge B (1999) Molecular and morphological evidence of a single species, Boccardia proboscidea (Polychaeta: Spionidae), with multiple development modes. Mar Biol 134:743–751

    Article  CAS  Google Scholar 

  • Grant J, Turner SJ, Legendre P, Hume TM, Bell RG (1997) Patterns of sediment reworking and transport over small spatial scales on an intertidal sandflat, Manujau Harbour, New Zealand. J Exp Mar Biol Ecol 216:33–50

    Article  Google Scholar 

  • Grassle JP, Grassle JF (1976) Sibling species in the marine pollution indicator Capitella (Polychaeta). Science 192:567–569

    CAS  PubMed  Google Scholar 

  • Harris S (1999) RAPD in systematics—a useful methodology? In: Hollingworth P, Bateman R, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor and Francis, London, pp 211–228

  • Hartmann-Schröder G (1996) Polychaeta. Fischer, Stuttgart

  • Hoagland KE, Robertson R (1988) An assessment of poecilogony in marine invertebrates: phenomenon or fantasy? Biol Bull (Woods Hole) 174:109–125

    Google Scholar 

  • Holte B (1998) The macrofauna and main functional interactions in the sill basin sediments of the Pristine Holandsfjord, northern Norway, with autecological reviews for some key-species. Sarsia 83:45–54

    Google Scholar 

  • Hornell J (1891) Report on the polychaetous annelids of the L.M.B.C. district. Trans Liverpool Biol Soc 5:223

    Google Scholar 

  • Jägersten G (1972) Evolution of the metazoan life cycle. Academic, London

  • Jones C, Edwards K, Castaglione S, Winfield M, Sala F, van deWiel C, Bredemeijer G, Vosman D, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevshi A, Marmiroli N, Aert R, Volchaert G, Rueda J, Linacerro R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SR markers in plants by a network of European laboratories. Mol Breeding 3:381–390

    Article  CAS  Google Scholar 

  • Jürss K, Röhner M, Bastrop R (1999) Enzyme activities and allozyme polymorphism in two genetic types (or sibling species) of the genus Marenzelleria (Polychaeta: Spionidae) in Europe. Mar Biol 135:489–496

    Article  Google Scholar 

  • Kijima A, Fujio Y (1984) Relationship between average heterozygosity and river population size in chum salmon. Bull Jpn Soc Scient Fish 50:603–608

    Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:89–216

    Article  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    CAS  Google Scholar 

  • Lamboy WF (1994) Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. Genome Res 4:31–37

    CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by the author http://bioweb.usu.edu/mpmbio/

  • Morgan TS, Rogers AD, Paterson GLJ, Hawkins LE, Sheader M (1999) Evidence for poecilogony in Pygospio elegans (Polychaeta: Spionidae). Mar Ecol Prog Ser 178:121–132

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    CAS  PubMed  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Plate S, Husemann E (1991) An alternative mode of larval development in Scoloplos armiger (O.F. Müller, 1776) (Polychaeta, Orbiniidae). Helgol Meeresunters 45:487–492

    Google Scholar 

  • Rasmussen E (1973) Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11:1–507

    Google Scholar 

  • Sato M (1999) Divergence of reproductive and developmental characteristics in Hediste (Polychaeta: Nereididae). Hydrobiologia 402:129–143

    Article  Google Scholar 

  • Sato M, Masuda Y (1997) Genetic differentiation in two sibling species of the brackish-water polychaete Hediste japonica complex (Nereididae). Mar Biol 130:163–170

    Article  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier J (2000) ARLEQUIN, version 2.000: a software for population genetics data. Genetics and Biometry Laboratory, University of Geneva, Geneva

  • Schultze MS (1855) Über die Entwicklung von Arenicola piscatorum nebst Bemerkungen über die Entwicklung anderer Kiemenwürmer. Abh Naturf Ges Halle 3:211

    Google Scholar 

  • Schulze SR, Rice SA, Simon JL, Karl SA (2000) Evolution of poecilogony and the biogeography of North American populations of the Polychaete Streblospio. Evolution 54:1247–1259

    CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

  • Tamaki A (1987) Comparison of resistivity to transport by wave action in several polychaete species on an intertidal sand flat. Mar Ecol Prog Ser 37:181–189

    Google Scholar 

  • Thamdrup HM (1935) Beiträge zur Ökologie der Wattenfauna auf experimenteller Grundlage. Medd Dan Fisk- Havunders 10:1–125

    Google Scholar 

  • Turner SJ, Grant J, Pridmore RD, Hewitt JE, Wilkinson MR, Hume TM, Morrisey DJ (1997) Bedload and water-column transport and colonization processes by post-settlement benthic macrofauna: does infaunal density matter? J Exp Mar Biol Ecol 216:51–75

    Article  Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Leet T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Weir B (1996) Intraspecific differentiation. In: Hillis D, Moritz C, Marble B (eds) Molecular systematics. Sinauer, Sunderland, Mass., pp 385–406

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  • Wilhelmsen U (1999) Rapid colonization of new habitats in the Wadden Sea by the ovoviviparous Littorina saxatilis (Olivi). Helgol Meeresunters 52:325–335

    Google Scholar 

  • Williams JGK, Kublelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6335

    PubMed  Google Scholar 

  • Wolfe AD, Liston A (1998) Contributions of the polymerase chain reaction to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants. II. Kluwer, Dordrecht, pp 43–86

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    Google Scholar 

  • Zühlke R, Reise K (1994) Response of macrofauna to drifting tidal sediments. Helgol Meeresunters 48:277–289

    Google Scholar 

Download references

Acknowledgements

We wish to thank K. Reise for his overall support during the study. The crew of the "Mya", N. Kruse and P. Elvert, were strongly involved in sampling the subtidal habitat and N. Volkenborn, T. Löbl and K. Heise helped untiringly in sampling both the intertidal and subtidal habitat. This study was financially supported by the German Federal Ministry of Education and Research (BMBF) under grant 03F0179A and by the Alfred Wegener Institute for Polar and Marine Research (AWI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kruse.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, I., Reusch, T.B.H. & Schneider, M.V. Sibling species or poecilogony in the polychaete Scoloplos armiger?. Marine Biology 142, 937–947 (2003). https://doi.org/10.1007/s00227-002-1007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-002-1007-2

Keywords

Navigation