Skip to main content
Log in

A Rationale for Osteoclast Selectivity of Inhibiting the Lysosomal V-ATPase a3 Isoform

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoclastic bone resorption can be completely abolished by inhibiting the vacuolar H+-ATPase (V-ATPase), a proton pump composed of at least 12 different subunits. However, V-ATPases are ubiquitous and it is unclear whether the osteoclast V-ATPase has a unique composition that would allow its selective inhibition. Aiming to answer this question, we compared human osteoclasts and monocytic THP.1 cells with respect to the localization of the a3 isoform of the 116-kDa subunit, which is indispensable for bone resorption, and sensitivity to SB242784, a V-ATPase inhibitor that prevents experimentally induced osteoporosis. By immunofluorescence, a3 was essentially nondetectable in THP.1 cells, while in osteoclasts a3 was highly upregulated and localized to lysosomes in nonresorbing osteoclasts. We isolated the lysosomal compartment from both sources as latex bead-containing phagolysosomes and compared them. Osteoclast phagolysosomes and THP.1 phagolysosomes both contained a3 and a1; however, the a3/a1 ratio was 3.8- to 11.2-fold higher in osteoclast phagolysosomes. Importantly, the V-ATPase-dependent acidification of phagolysosomes from both sources was essentially equally sensitive to SB242784. Thus, we observed no indication of a qualitative uniqueness of the osteoclast V-ATPase; rather, the high a3-level in osteoclasts may represent an upregulation of the common lysosomal V-ATPase. Our results, together with the reported phenotype of a3 deficiency and the reported efficacy of SB242784 in vivo, suggest that V-ATPase structure-independent mechanisms render bone resorption more sensitive than lysosomal function to V-ATPase inhibition. One such mechanism may be compensation of a3 by a1, which may be sufficient for retaining lysosomal function but not bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palokangas H, Mulari M, Vaananen HK (1997) Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J Cell Sci 110 (Pt 15): 1767–1780

    Google Scholar 

  2. Nishi T, Forgac M (2002) The vacuolar H+-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  PubMed  CAS  Google Scholar 

  3. Keeling DJ, Herslof M, Ryberg B, Sjogren S, Solvell L (1997) Vacuolar H+-ATPases. Targets for drug discovery? Ann N Y Acad Sci 834:600–608

    Article  PubMed  CAS  Google Scholar 

  4. Nadler G, Morvan M, Delimoge I, Belfiore P, Zocchetti A, James I, Zembryki D, Lee-Rycakzewski E, Parini C, Consolandi E, Gagliardi S, Farina C (1998) (2Z, 4E)-5-(5,6-Dichloro-2-indolyl)-2-methoxy-N-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pentadienamide, a novel, potent and selective inhibitor of the osteoclast V-ATPase. Bioorg Med Chem Lett 8:3621–3626

    Article  PubMed  CAS  Google Scholar 

  5. Gagliardi S, Rees M, Farina C (1999) Chemistry and structure activity relationships of bafilomycin A1, a potent and selective inhibitor of the vacuolar H+-ATPase. Curr Med Chem 6:1197–1212

    PubMed  CAS  Google Scholar 

  6. Gagliardi S, Nadler G, Consolandi E, Parini C, Morvan M, Legave MN, Belfiore P, Zocchetti A, Clarke GD, James I, Nambi P, Gowen M, Farina C (1998) 5-(5,6-Dichloro-2-indolyl)-2-methoxy-2,4-pentadienamides: novel and selective inhibitors of the vacuolar H+-ATPase of osteoclasts with bone antiresorptive activity. J Med Chem 41:1568–1573

    Article  PubMed  CAS  Google Scholar 

  7. Visentin L, Dodds RA, Valente M, Misiano P, Bradbeer JN, Oneta S, Liang X, Gowen M, Farina C (2000) A selective inhibitor of the osteoclastic V-H+-ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. J Clin Invest 106:309–318

    Article  PubMed  CAS  Google Scholar 

  8. Nishi T, Forgac M (2000) Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J Biol Chem 275:6824–6830

    Article  PubMed  CAS  Google Scholar 

  9. Toyomura T, Oka T, Yamaguchi C, Wada Y, Futai M (2000) Three subunit a isoforms of mouse vacuolar H+-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 275:8760–8765

    Article  PubMed  CAS  Google Scholar 

  10. Oka T, Murata Y, Namba M, Yoshimizu T, Toyomura T, Yamamoto A, Sun-Wada GH, Hamasaki N, Wada Y, Futai M (2001) a4, a unique kidney-specific isoform of mouse vacuolar H+-ATPase subunit a. J Biol Chem 276:40050–40054

    Article  PubMed  CAS  Google Scholar 

  11. Toyomura T, Murata Y, Yamamoto A, Oka T, Sun-Wada GH, Wada Y, Futai M (2003) From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278:22023–22030

    Article  PubMed  CAS  Google Scholar 

  12. Dou H, Xu J, Wang Z, Smith AN, Soleimani M, Karet FE, Greinwald JH Jr, Choo D (2004) Co-expression of pendrin, vacuolar H+-ATPase alpha4-subunit and carbonic anhydrase II in epithelial cells of the murine endolymphatic sac. J Histochem Cytochem 52:1377–1384

    Article  PubMed  CAS  Google Scholar 

  13. Manolson MF, Yu H, Chen W, Yao Y, Li K, Lees RL, Heersche JN (2003) The a3 isoform of the 100-kDa V-ATPase subunit is highly but differentially expressed in large (≥10 nuclei) and small (≤nuclei) osteoclasts. J Biol Chem 278:49271–49278

    Article  PubMed  CAS  Google Scholar 

  14. Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  PubMed  CAS  Google Scholar 

  15. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  PubMed  CAS  Google Scholar 

  16. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C (2000) Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  PubMed  CAS  Google Scholar 

  17. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, Babul-Hirji R, Baric I, Canham N, Chitayat D, Dupuis-Girod S, Ellis I, Etzioni A, Fasth A, Fisher A, Gerritsen B, Gulino V, Horwitz E, Klamroth V, Lanino E, Mirolo M, Musio A, Matthijs G, Nonomaya S, Notarangelo LD, Ochs HD, Superti Furga A, Valiaho J, van Hove JL, Vihinen M, Vujic D, Vezzoni P, Villa A (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773

    Article  PubMed  CAS  Google Scholar 

  18. Michigami T, Kageyama T, Satomura K, Shima M, Yamaoka K, Nakayama M, Ozono K (2002) Novel mutations in the a3 subunit of vacuolar H+-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30:436–439

    Article  PubMed  CAS  Google Scholar 

  19. Scott BB, Chapman CG (1998) The putative 116 kDa osteoclast specific vacuolar proton pump subunit has ubiquitous tissue distribution. Eur J Pharmacol 346:R3–R4

    Article  PubMed  CAS  Google Scholar 

  20. Husheem M, Nyman JK, Vaaraniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76:222–230

    Article  PubMed  CAS  Google Scholar 

  21. Hellman J, Kakonen SM, Matikainen MT, Karp M, Lovgren T, Vaananen HK, Pettersson K (1996) Epitope mapping of nine monoclonal antibodies against osteocalcin: combinations into two-site assays affect both assay specificity and sample stability. J Bone Miner Res 11:1165–1175

    Article  PubMed  CAS  Google Scholar 

  22. Vaananen HK, Parvinen EK (1983) High active isoenzyme of carbonic anhydrase in rat calvaria osteoclasts. Immunohistochemical study. Histochemistry 78:481–485

    Article  PubMed  CAS  Google Scholar 

  23. Vaananen HK, Carter ND, Dodgson SJ (1991) Immunocytochemical localization of mitochondrial carbonic anhydrase in rat tissues. J Histochem Cytochem 39:451–459

    PubMed  CAS  Google Scholar 

  24. Desjardins M, Huber LA, Parton RG, Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677–688

    Article  PubMed  CAS  Google Scholar 

  25. Mattsson JP, Lorentzon P, Wallmark B, Keeling DJ (1993) Characterization of proton transport in bone-derived membrane vesicles. Biochim Biophys Acta 1146:106–112

    Article  PubMed  CAS  Google Scholar 

  26. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  PubMed  CAS  Google Scholar 

  27. Xia L, Kilb J, Wex H, Li Z, Lipyansky A, Breuil V, Stein L, Palmer JT, Dempster DW, Bromme D (1999) Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem 380:679–687

    Article  PubMed  CAS  Google Scholar 

  28. Sakai E, Miyamoto H, Okamoto K, Kato Y, Yamamoto K, Sakai H (2001) Characterization of phagosomal subpopulations along endocytic routes in osteoclasts and macrophages. J Biochem 130:823–831

    PubMed  CAS  Google Scholar 

  29. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  30. Vaananen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled borders of osteoclasts. J Cell Biol 111:1305–1311

    Article  PubMed  CAS  Google Scholar 

  31. Niikura K, Takano M, Sawada M (2004) A novel inhibitor of vacuolar ATPase, FR167356, which can discriminate between osteoclast vacuolar ATPase and lysosomal vacuolar ATPase. Br J Pharmacol 142:558–566

    Article  PubMed  CAS  Google Scholar 

  32. Niikura K, Takeshita N, Takano M (2005) A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. J Bone Miner Res 20:1579–1588

    Article  PubMed  CAS  Google Scholar 

  33. Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    PubMed  CAS  Google Scholar 

  34. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  PubMed  CAS  Google Scholar 

  35. Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119:4531–4540

    Article  PubMed  CAS  Google Scholar 

  36. Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13:285–292

    Article  PubMed  CAS  Google Scholar 

  37. Smith AN, Borthwick KJ, Karet FE (2002) Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G, and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297:169–177

    Article  PubMed  CAS  Google Scholar 

  38. Wu H, Xu G, Li YP (2009) Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J Bone Miner Res 24:871–885

    Article  PubMed  CAS  Google Scholar 

  39. Mattsson JP, Li X, Peng SB, Nilsson F, Andersen P, Lundberg LG, Stone DK, Keeling DJ (2000) Properties of three isoforms of the 116-kDa subunit of vacuolar H+-ATPase from a single vertebrate species. Cloning, gene expression and protein characterization of functionally distinct isoforms in Gallus gallus. Eur J Biochem 267:4115–4126

    Article  PubMed  CAS  Google Scholar 

  40. Perin MS, Fried VA, Stone DK, Xie XS, Sudhof TC (1991) Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem 266:3877–3881

    PubMed  CAS  Google Scholar 

  41. Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot FG (2008) Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One 3:e2758

    Article  PubMed  CAS  Google Scholar 

  42. Blair HC, Borysenko CW, Villa A, Schlesinger PH, Kalla SE, Yaroslavskiy BB, Garcia-Palacios V, Oakley JI, Orchard PJ (2004) In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects. J Bone Miner Res 19:1329–1338

    Article  PubMed  Google Scholar 

  43. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A (2003) Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68

    PubMed  CAS  Google Scholar 

  44. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A (2006) Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 43:315–325

    Article  PubMed  CAS  Google Scholar 

  45. Sun-Wada GH, Tabata H, Kawamura N, Aoyama M, Wada Y (2009) Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J Cell Sci 122:2504–2513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded from the European Commission under contract QLG-CT-2000-01801 (MIVase-New Therapeutic Approaches to Osteoporosis, targeting the osteoclast V-ATPase). Dr. Kalman Büki is acknowledged for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas K. E. Nyman.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, J.K.E., Väänänen, H.K. A Rationale for Osteoclast Selectivity of Inhibiting the Lysosomal V-ATPase a3 Isoform. Calcif Tissue Int 87, 273–283 (2010). https://doi.org/10.1007/s00223-010-9395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9395-7

Keywords

Navigation