Skip to main content
Log in

The impacts of coordinative exercise on executive function in kindergarten children: an ERP study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2013

Abstract

This study examined the behavioral and neuroelectrical impacts of a coordinative exercise intervention with different exercise intensities on executive function in kindergarten children. Participants underwent the Eriksen flanker test before and after an exercise program that involved 35-min sessions twice per week for 8 weeks, with either low or moderate intensity. Our findings revealed that exercise intervention, regardless of intensity, resulted in shorter reaction times and higher response accuracy in both congruent and incongruent trials, with incongruent trials receiving a larger benefit from exercise compared with congruent trials. Additionally, neuroelectrical activation demonstrated greater P3 amplitude and shorter P3 latency following exercise in both trials. These results suggest that coordinative exercise may specifically benefit prefrontal-dependent tasks in the immature brain state of kindergarten children by increasing the allocation of attentional resources and enhancing the efficiency of neurocognitive processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL (2002) A developmental fMRI study of the Stroop color-word task. Neuroimage 16:61–75. doi:10.1006/nimg.2001.1046

    Article  PubMed  Google Scholar 

  • American College of Sports Medicine (2010) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams and Wilkins, New York

    Google Scholar 

  • Amso D, Casey BJ (2006) Beyond what develops when. Curr Dir Psychol Sci 15:24–29

    Article  Google Scholar 

  • Best JR (2010) Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev 30:331–351

    Article  PubMed  Google Scholar 

  • Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81:1641–1660

    Article  PubMed  Google Scholar 

  • Budde H, Voelcker-Rehage C, Pietrabyk-Kendziorra S, Ribeiro P, Tidow G (2008) Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett 441:219–223. doi:10.1016/j.neulet.2008.06.024

    Article  PubMed  CAS  Google Scholar 

  • Chaddock L, Erickson KI, Prakash RS et al (2010a) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358:172–183. doi:10.1016/j.brainres.2010.08.049

    Article  PubMed  CAS  Google Scholar 

  • Chaddock L, Erickson KI, Prakash RS et al (2010b) Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev Neurosci 32:249–256. doi:10.1159/000316648

    Article  PubMed  CAS  Google Scholar 

  • Chang YK, Ku PW, Tomporowski PD, Chen FT, Huang CC (2012a) The effects of acute resistance exercise on late-middle-aged adults’ goal planning. Med Sci Sports Exerc 44:1773–1779. doi:10.1249/MSS.0b013e3182574e0b

    Article  PubMed  Google Scholar 

  • Chang YK, Nien YH, Tasi CL, Etnier JL (2010) Physical activity and cognition in older adults: The potential of Tai Chi Chuan. J Aging Phys Act 18:451–472

    PubMed  Google Scholar 

  • Chang YK, Pan CY, Chen FT, Tsai CL, Huang CC (2012b) Effect of resistance exercise training on cognitive function in healthy older adults: a review. J Aging Phys Act 20:497–516

    PubMed  Google Scholar 

  • Colcombe SJ, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  • Davis CL, Tomporowski PD, Boyle CA, Waller JL, Miller PH, Naglieri JA, Gregoski M (2007) Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport 78:510–519

    PubMed  Google Scholar 

  • Davis CL, Tomporowski PD, McDowell JE et al (2011) Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol 30:91–98. doi:10.1037/a0021766

    Article  PubMed  Google Scholar 

  • Diamond A, Lee K (2011) Interventions shown to aid executive function development in children 4 to 12 years old. Science 333:959–964. doi:10.1126/science.1204529

    Article  PubMed  CAS  Google Scholar 

  • Egan CD, Verheul MH, Savelsbergh GJ (2007) Effects of experience on the coordination of internally and externally timed soccer kicks. J Mot Behav 39:423–432. doi:10.3200/JMBR.39.5.423-432

    Article  PubMed  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039. doi:10.1002/hipo.20547

    Article  PubMed  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Atten Percept Psychophys 16:143–149

    Article  Google Scholar 

  • Etnier JL, Chang YK (2009) The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. J Sport Exerc Psychol 31:469–483

    PubMed  Google Scholar 

  • Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85

    Article  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    Article  PubMed  CAS  Google Scholar 

  • Hillman CH, Buck SM, Themanson JR, Pontifex MB, Castelli DM (2009a) Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol 45:114–129

    Article  PubMed  Google Scholar 

  • Hillman CH, Castelli DM, Buck SM (2005) Aerobic fitness and neurocognitive function in healthy preadolescent children. Med Sci Sports Exerc 37:1967–1974. doi:10.1249/01.mss.0000176680.79702.ce

    Article  PubMed  Google Scholar 

  • Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65. doi:10.1038/nrn2298

    Article  PubMed  CAS  Google Scholar 

  • Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF (2009b) The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159:1044–1054. doi:10.1016/j.neuroscience.2009.01.057

    Article  PubMed  CAS  Google Scholar 

  • Hotting K, Reich B, Holzschneider K et al (2012) Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychol 31:145–155. doi:10.1037/a0025371

    Article  PubMed  Google Scholar 

  • Kamijo K, Hayashi Y, Sakai T, Yahiro T, Tanaka K, Nishihira Y (2009) Acute effects of aerobic exercise on cognitive function in older adults. J Gerontol Ser B Psychol Sci Soc Sci 64:356–363. doi:10.1093/geronb/gbp030

    Article  Google Scholar 

  • Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K (2007) The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol 65:114–121. doi:10.1016/j.ijpsycho.2007.04.001

    Article  PubMed  Google Scholar 

  • Kwok TCY, Lam K, Wong P et al (2011) Effectiveness of coordination exercise in improving cognitive function in older adults: a prospective study. Clin Interv Aging 6:261

    PubMed  Google Scholar 

  • Manolopoulos E, Papadopoulos C, Kellis E (2006) Effects of combined strength and kick coordination training on soccer kick biomechanics in amateur players. Scand J Med Sci Sports 16:102–110. doi:10.1111/j.1600-0838.2005.00447.x

    Article  PubMed  CAS  Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn Psychol 41:49–100. doi:10.1006/cogp.1999.0734

    Article  PubMed  CAS  Google Scholar 

  • Newell KM (1985) Coordination, control and skill. In: Goodman D, Wilberg R, Franks I (eds) Differing perspectives in motor learning, memory and control. Elsevier Science Publishing Company, INC, Amsterdam, pp 295–317

  • O’ Hare ED, Sowell ER (2008) Imaging developmental changes in gray and white matter in the human brain. In: Nelson CA, Luciana M (eds) Handbook of developmental cognitive neuroscience, 2nd edn. MIT Press, Cambridge, MA, pp 23–38

    Google Scholar 

  • Planinsec J (2002) Relations between the motor and cognitive dimensions of preschool girls and boys. Percept Mot Skills 94:415–423

    Article  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi:10.1016/j.clinph.2007.04.019

    Article  PubMed  Google Scholar 

  • Pontifex MB, Raine LB, Johnson CR et al (2011) Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J Cogn Neurosci 23:1332–1345

    Article  PubMed  Google Scholar 

  • Semlitsch H, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23:695–703

    Article  PubMed  CAS  Google Scholar 

  • Sibley BA, Etnier JL (2003) The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci 15:243–256

    Google Scholar 

  • Smith PJ, Blumenthal JA, Hoffman BM et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252. doi:10.1097/PSY.0b013e3181d14633

    Article  PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231. doi:10.1523/JNEUROSCI.1798-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Stroth S, Kubesch S, Dieterle K, Ruchsow M, Heim R, Kiefer M (2009) Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res 1269:114–124. doi:10.1016/j.brainres.2009.02.073

    Article  PubMed  CAS  Google Scholar 

  • Themanson JR, Hillman CH (2006) Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience 141:757–767. doi:10.1016/j.neuroscience.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  • Tomporowski PD, Davis CL, Miller P, Naglieri J (2008) Exercise and children’s intelligence, cognition, and academic achievement. Educ Psychol Rev 20:111–131. doi:10.1007/s10648-007-9057-0

    Article  PubMed  Google Scholar 

  • Uhrich TA, Swalm RL (2007) A pilot study of a possible effect from a motor task on reading performance. Percept Mot Skills 104:1035–1041

    Article  PubMed  Google Scholar 

  • Voss MW, Kramer AF, Basak C, Prakash RS, Roberts B (2010) Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol 24:812–826

    Article  Google Scholar 

  • Weinstein AM, Voss MW, Prakash RS et al (2012) The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun 26:811–819. doi:10.1016/j.bbi.2011.11.008

    Article  PubMed  Google Scholar 

  • Wu CT, Pontifex MB, Raine LB, Chaddock L, Voss MW, Kramer AF, Hillman CH (2011) Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 25:333–343

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is particularly supported by “Aim for the Top University Plan” of the National Taiwan Normal University and the Ministry of Education, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Min Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YK., Tsai, YJ., Chen, TT. et al. The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Exp Brain Res 225, 187–196 (2013). https://doi.org/10.1007/s00221-012-3360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3360-9

Keywords

Navigation