Skip to main content
Log in

Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Tinnitus is an ongoing phantom percept. It has been demonstrated that bifrontal transcranial direct current stimulation (tDCS) can reduce tinnitus. In this study, one group of patients reported a substantial improvement in their tinnitus perception, whereas another group described minor or no beneficial effect at all. The objective was to verify whether the activity and connectivity of the resting brain is different for people who will respond to bifrontal tDCS for tinnitus in comparison with non-responders. Higher gamma band activity was demonstrated in right primary and secondary auditory cortex and right parahippocampus for responders. It has been shown that gamma band activity in the auditory cortex is correlated with tinnitus loudness and that the anterior cingulate is involved in tinnitus distress. People who were going to respond to bifrontal tDCS also demonstrated an increased functional connectivity in the gamma band between the right dorsolateral prefrontal cortex (DLPFC) and the right parahippocampus as well as the right DLPFC and subgenual anterior cingulate cortex (sgACC). An analysis revealed that responders to bifrontal tDCS also experienced a larger suppression effect on TMS placed over the right temporal cortex (i.e. auditory cortex) than non-responders. Responders to bifrontal tDCS seem to differ in resting brain activity compared to non-responders in the right auditory cortex and parahippocampal area. They also have a different functional connectivity between DLPFC and, respectively, the sgACC and parahippocampal area. These connectivities might explain the suppression effect for both tinnitus loudness and tinnitus-related distress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37

    Article  PubMed  CAS  Google Scholar 

  • Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45:702–707

    Article  PubMed  Google Scholar 

  • Antal A, Varga ET, Kincses TZ, Nitsche MA, Paulus W (2004b) Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport 15:1307–1310

    PubMed  Google Scholar 

  • Axelsson A, Ringdahl A (1989) Tinnitus–a study of its prevalence and characteristics. Br J Audiol 23:53–62

    Article  PubMed  CAS  Google Scholar 

  • Beeli G, Casutt G, Baumgartner T, Jancke L (2008) Modulating presence and impulsiveness by external stimulation of the brain. Behav Brain Funct 4:33

    Article  PubMed  Google Scholar 

  • Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2:382–387

    Article  PubMed  CAS  Google Scholar 

  • Bodner M, Kroger J, Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7:1905–1908

    Article  PubMed  CAS  Google Scholar 

  • Boggio PS, Zaghi S, Lopes M, Fregni F (2008) Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 15:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Boggio PS, Zaghi S, Fregni F (2009) Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 47:212–217

    Article  PubMed  Google Scholar 

  • Boutros NN, Trautner P, Rosburg T, Korzyukov O, Grunwald T, Schaller C, Elger CE, Kurthen M (2005) Sensory gating in the human hippocampal and rhinal regions. Clin Neurophysiol 116:1967–1974

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Mears R, Pflieger ME, Moxon KA, Ludowig E, Rosburg T (2008) Sensory gating in the human hippocampal and rhinal regions: regional differences. Hippocampus 18:310–316

    Article  PubMed  CAS  Google Scholar 

  • Congedo M (2002) EureKa! (Version 3.0) [Computer Software]. Knoxville, TN: NovaTech EEG Inc. Freeware available at http://www.NovaTechEEG

  • De Ridder D, De Mulder G, Walsh V, Muggleton N, Sunaert S, Moller A (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100:560–564

    Article  PubMed  Google Scholar 

  • De Ridder D, Verstraeten E, Van der Kelen K, De Mulder G, Sunaert S, Verlooy J, Van de Heyning P, Moller A (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:616–619

    Article  PubMed  Google Scholar 

  • De Ridder D, Fransen H, Francois O, Sunaert S, Kovacs S, Van De Heyning P (2006) Amygdalohippocampal involvement in tinnitus and auditory memory. Acta Otolaryngol Suppl 12:50–53

    Google Scholar 

  • De Ridder D, De Mulder G, Verstraeten E, Seidman M, Elisevich K, Sunaert S, Kovacs S, Van der Kelen K, Van de Heyning P, Moller A (2007a) Auditory cortex stimulation for tinnitus. Acta Neurochir Suppl 97:451–462

    Article  PubMed  Google Scholar 

  • De Ridder D, van der Loo E, Van der Kelen K, Menovsky T, van de Heyning P, Moller A (2007b) Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci 4:237–241

    PubMed  Google Scholar 

  • De Ridder D, Vanneste S, van der Loo E, Plazier M, Menovsky T, van de Heyning P (2010) Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg 112:1289–1294

    Article  PubMed  Google Scholar 

  • Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682

    Article  PubMed  CAS  Google Scholar 

  • Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A (2006a) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8:203–204

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A (2006b) Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety 23:482–484

    Article  PubMed  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712

    Article  PubMed  Google Scholar 

  • Grunwald T, Boutros NN, Pezer N, von Oertzen J, Fernandez G, Schaller C, Elger CE (2003) Neuronal substrates of sensory gating within the human brain. Biol Psychiatry 53:511–519

    Article  PubMed  Google Scholar 

  • Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 36:239–248

    Article  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611

    Article  PubMed  Google Scholar 

  • Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100:129–139

    Article  PubMed  Google Scholar 

  • Kaltenbach JA (2000) Neurophysiologic mechanisms of tinnitus. J Am Acad Audiol 11:125–137

    PubMed  CAS  Google Scholar 

  • Kleinjung T, Eichhammer P, Landgrebe M, Sand P, Hajak G, Steffens T, Strutz J, Langguth B (2008) Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study. Otolaryngol Head Neck Surg 138:497–501

    Article  PubMed  Google Scholar 

  • Knight RT, Scabini D, Woods DL (1989) Prefrontal cortex gating of auditory transmission in humans. Brain Res 504:338–342

    Article  PubMed  CAS  Google Scholar 

  • Korzyukov O, Pflieger ME, Wagner M, Bowyer SM, Rosburg T, Sundaresan K, Elger CE, Boutros NN (2007) Generators of the intracranial P50 response in auditory sensory gating. Neuroimage 35:814–826

    Article  PubMed  Google Scholar 

  • Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, May A, de Ridder D, Hajak G (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46:213–218

    Article  PubMed  Google Scholar 

  • Langguth B, Eichhammer P, Wiegand R, Marienhegen J, Maenner P, Jacob P, Hajak G (2003) Neuronavigated rTMS in a patient with chronic tinnitus. Effects of 4 weeks treatment. Neuroreport 14:977–980

    Article  PubMed  Google Scholar 

  • Langguth B, Hajak G, Kleinjung T, Pridmore S, Sand P, Eichhammer P (2006a) Repetitive transcranial magnetic stimulation and chronic tinnitus. Acta Otolaryngol Suppl 12:102–105

    Google Scholar 

  • Langguth B, Zowe M, Landgrebe M, Sand P, Kleinjung T, Binder H, Hajak G, Eichhammer P (2006b) Transcranial magnetic stimulation for the treatment of tinnitus: a new coil positioning method and first results. Brain Topogr 18:241–247

    Article  PubMed  Google Scholar 

  • Lewis JW, Beauchamp MS, DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex 10:873–888

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–15227

    Article  PubMed  CAS  Google Scholar 

  • Londero A, Langguth B, De Ridder D, Bonfils P, Lefaucheur JP (2006) Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus? Neurophysiol Clin 36:145–155

    Article  PubMed  CAS  Google Scholar 

  • Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37:579–588

    Article  PubMed  Google Scholar 

  • Masten CL, Eisenberger NI, Borofsky LA, Pfeifer JH, McNealy K, Mazziotta JC, Dapretto M (2009) Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection. Soc Cogn Affect Neurosci 4:143–157

    Article  PubMed  Google Scholar 

  • Meeus O, Blaivie C, Ost J, De Ridder D, Van de Heyning P (2009) Influence of tonic and burst transcranial magnetic stimulation characteristics on acute inhibition of subjective tinnitus. Otol Neurotol 30:697–703

    Article  PubMed  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629

    Article  PubMed  Google Scholar 

  • Mirz F, Pedersen B, Ishizu K, Johannsen P, Ovesen T, Stodkilde-Jorgensen H, Gjedde A (1999) Positron emission tomography of cortical centers of tinnitus. Hear Res 134:133–144

    Article  PubMed  CAS  Google Scholar 

  • Mirz F, Gjedde A, Ishizu K, Pedersen CB (2000) Cortical networks subserving the perception of tinnitus–a PET study. Acta Otolaryngol Suppl 543:241–243

    Article  PubMed  CAS  Google Scholar 

  • Mitchell TV, Morey RA, Inan S, Belger A (2005) Functional magnetic resonance imaging measure of automatic and controlled auditory processing. Neuroreport 16:457–461

    Article  PubMed  Google Scholar 

  • Muhlau M, Rauschecker JP, Oestreicher E, Gaser C, Rottinger M, Wohlschlager AM, Simon F, Etgen T, Conrad B, Sander D (2006) Structural brain changes in tinnitus. Cereb Cortex 16:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–10343

    Article  PubMed  CAS  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3: 633–639

    Google Scholar 

  • Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901

    PubMed  CAS  Google Scholar 

  • Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W (2003) Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 114:600–604

    Article  PubMed  Google Scholar 

  • Norena A, Cransac H, Chery-Croze S (1999) Towards an objectification by classification of tinnitus. Clin Neurophysiol 110:666–675

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 (Suppl D): 5–12

  • Pascual-Marqui R (2007a) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. http://arxiv.org/abs/0710.3341

  • Pascual-Marqui R (2007b) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. http://arxiv.org/abs/0711.1455

  • Plewnia C, Reimold M, Najib A, Reischl G, Plontke SK, Gerloff C (2007) Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study. J Neurol Neurosurg Psychiatr 78:152–156

    Article  PubMed  CAS  Google Scholar 

  • Pridmore S, Fernandes Filho JA, Nahas Z, Liberatos C, George MS (1998) Motor threshold in transcranial magnetic stimulation: a comparison of a neurophysiological method and a visualization of movement method. J ECT 14:25–27

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, Leaver AM, Muhlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C, Giovannelli F, Passero S (2007) A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin Neurophysiol 118:709–716

    Article  PubMed  Google Scholar 

  • Schlee W, Hartmann T, Langguth B, Weisz N (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11

    Article  PubMed  Google Scholar 

  • Schneider P, Andermann M, Wengenroth M, Goebel R, Flor H, Rupp A, Diesch E (2009) Reduced volume of Heschl’s gyrus in tinnitus. Neuroimage 45:927–939

    Article  PubMed  Google Scholar 

  • Smits M, Kovacs S, de Ridder D, Peeters RR, van Hecke P, Sunaert S (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49:669–679

    Article  PubMed  Google Scholar 

  • Tulving E, Markowitsch HJ (1997) Memory beyond the hippocampus. Curr Opin Neurobiol 7:209–216

    Article  PubMed  CAS  Google Scholar 

  • van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, Van de Heyning P, De Ridder D (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE 4: e7396: 7391–7395

    Google Scholar 

  • Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010a) The neural correlates of tinnitus-related distress. Neuroimage 52:470–480

    Article  PubMed  Google Scholar 

  • Vanneste S, Plazier M, Ost J, van der Loo E, Van de Heyning P, De Ridder D (2010b) Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res 202:779–785

    Article  PubMed  Google Scholar 

  • Voisin J, Bidet-Caulet A, Bertrand O, Fonlupt P (2006) Listening in silence activates auditory areas: a functional magnetic resonance imaging study. J Neurosci 26:273–278

    Article  PubMed  CAS  Google Scholar 

  • Weisz N, Dohrmann K, Elbert T (2007a) The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res 166:61–70

    Article  PubMed  Google Scholar 

  • Weisz N, Muller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007b) The neural code of auditory phantom perception. J Neurosci 27:1479–1484

    Article  PubMed  CAS  Google Scholar 

  • Zald DH, Pardo JV (2002) The neural correlates of aversive auditory stimulation. Neuroimage 16:746–753

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Vanneste.

Additional information

Funded by Tinnitus Network initiative.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanneste, S., Focquaert, F., Van de Heyning, P. et al. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res 210, 217–227 (2011). https://doi.org/10.1007/s00221-011-2617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2617-z

Keywords

Navigation