Skip to main content

Advertisement

Log in

Gait capacity affects cortical activation patterns related to speed control in the elderly

Experimental Brain Research Aims and scope Submit manuscript

Abstract

Functional decline in locomotion is common among the elderly, and the prevalence of gait disorders increases with age. Recently, increasing interest has been focused on the influence of age-related decline in brain function and neurological disorders such as dementia and Alzheimer’s disease on gait capacity. However, the neural mechanisms underlying gait control in the elderly remain poorly understood. We examined whether cortical activation patterns associated with the control of gait speed were related to the walking capacity in elderly subjects. Fifteen healthy elderly subjects participated in the study (mean ± SD 63 ± 4). Using functional near-infrared spectroscopy, we measured the changes in the cortical oxygenated hemoglobin (oxyHb) while the subjects walked on a treadmill at low, moderate, and high speeds corresponding to 30, 50, and 70% intensity of work load in each subject. We found a greater increase in oxyHb in the left prefrontal cortex (PFC) and the supplementary motor area (SMA) during walking at 70% intensity than at 50 or 30%. The degree of medial sensorimotor cortex (mSMC) and SMA activations was correlated with the locomotor speed and cadence. Heart rate response was only related with left PFC activation. Furthermore, at the highest speed, the change in the PFC activation was greater in subjects with low gait capacity than in those with high gait capacity. Our results indicate that the left PFC, SMA, and SMC control gait speed, and that the involvement of the left PFC might depend on an age-related decline in gait capacity in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1–37

    PubMed  CAS  Google Scholar 

  • Atkinson HH, Rosano C, Simonsick EM, Williamson JD, Davis C, Ambrosius WT, Rapp SR, Cesari M, Newman AB, Harris TB, Rubin SM, Yaffe K, Satterfield S, Kritchevsky SB (2007) Health ABC study. Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 62:844–850

    PubMed  Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Ble A, Volpato S, Zuliani G, Guralnik JM, Bandinelli S, Lauretani F, Bartali B, Maraldi C, Fellin R, Ferrucci L (2005) Executive function correlates with walking speed in older persons: the InCHIANTI study. J Am Geriatr Soc 53:410–415

    Article  PubMed  Google Scholar 

  • Borg GA (1982) Physiological basis of perceived exertion. Med Sci Sports Exerc 14:377–381

    PubMed  CAS  Google Scholar 

  • Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S, Jennings JM, Houle S, Craik FI (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17:391–400

    PubMed  CAS  Google Scholar 

  • Cabeza R, Anderson ND, Houle S, Mangels JA, Nyberg L (2000) Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. J Cogn Neurosci 12:197–206

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Anderson ND, Houle S, Mangels JA, Nyberg L, Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17:1394–1402

    Article  PubMed  Google Scholar 

  • Carlson MC, Fried LP, Xue QL, Bandeen-Roche K, Zeger SL, Brandt J (1999) Association between executive attention and physical functional performance in community-dwelling older women. J Gerontol B Psychol Sci Soc Sci 54:S262–S270

    PubMed  CAS  Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121:253–264

    Article  PubMed  Google Scholar 

  • Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118:935–950

    Article  PubMed  Google Scholar 

  • Cunnington R, Windischberger C, Deecke L, Moser E (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15:373–385

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84:393–402

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81:3065–3077

    PubMed  CAS  Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125:2626–2634

    Article  PubMed  Google Scholar 

  • Drew T (1988) Motor cortical cell discharge during voluntary gait modification. Brain Res 457:181–187

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626

    PubMed  CAS  Google Scholar 

  • Esposito G, Kirkby BS, Van Horn JD, Ellmore TM, Berman KF (1999) Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. Brain 122:963–979

    Article  PubMed  Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  PubMed  CAS  Google Scholar 

  • Fife TD, Baloh RW (1993) Disequilibrium of unknown cause in older people. Ann Neurol l34:694–702

    Article  Google Scholar 

  • Fitzpatrick AL, Buchanan CK, Nahin RL, Dekosky ST, Atkinson HH, Carlson MC, Williamson JD (2007) Ginkgo evaluation of memory (GEM) study investigators. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J Gerontol A Biol Sci Med Sci 62:1244–1251

    PubMed  Google Scholar 

  • Frith CD (2000) The role of dorsolateral prefrontal cortex in the selection of action. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance. MIT, Cambridge, pp 549–565

    Google Scholar 

  • Frith CD, Friston K, Liddle PF, Frackowiak RS (1991) Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci 244:241–246

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228:183–186

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602

    Article  PubMed  Google Scholar 

  • Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709

    Article  PubMed  Google Scholar 

  • Gratton G, Corballis PM (1995) Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. Psychophysiology 32:292–299

    Article  PubMed  CAS  Google Scholar 

  • Hakim AA, Petrovitch H, Burchfiel CM, Ross GW, Rodriguez BL, White LR, Yano K, Curb JD, Abbott RD (1998) Effects of walking on mortality among nonsmoking retired men. N Engl J Med 338:94–99

    Article  PubMed  CAS  Google Scholar 

  • Hardy SE, Perera S, Roumani YF, Chandler JM, Studenski SA (2007) Improvement in usual gait speed predicts better survival in older adults. J Am Geriatr Soc 55:1727–1734

    Article  PubMed  Google Scholar 

  • Hatakenaka M, Miyai I, Mihara M, Sakoda S, Kubota K (2007) Frontal regions involved in learning of motor skill—a functional NIRS study. Neuroimage 34:109–116

    Article  PubMed  Google Scholar 

  • Hesselmann V, Zaro Weber O, Wedekind C, Krings T, Schulte O, Kugel H, Krug B, Klug N, Lackner KJ (2001) Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308:141–144

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76:617–621

    PubMed  CAS  Google Scholar 

  • Holtzer R, Verghese J, Xue X, Lipton RB (2006) Cognitive processes related to gait velocity: results from the Einstein aging study. Neuropsychology 20:215–223

    Article  PubMed  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90:1657–1662

    PubMed  CAS  Google Scholar 

  • Humberstone M, Sawle GV, Clare S, Hykin J, Coxon R, Bowtell R, Macdonald IA, Morris PG (1997) Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann Neurol 42:632–637

    Article  PubMed  CAS  Google Scholar 

  • Inzitari M, Newman AB, Yaffe K, Boudreau R, de Rekeneire N, Shorr R, Harris TB, Rosano C (2007) Gait speed predicts decline in attention and psychomotor speed in older adults: the health aging and body composition study. Neuroepidemiology 29:156–162

    Article  PubMed  Google Scholar 

  • Jensen G, Nielsen HB, Ide K, Madsen PL, Svendsen LB, Svendsen UG, Secher NH (2002) Cerebral oxygenation during exercise in patients with terminal lung disease. Chest 122:445–450

    Article  PubMed  Google Scholar 

  • Karvonen MJ, Kentala E, Mustal D (1957) The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn 35:307–315

    PubMed  CAS  Google Scholar 

  • Kerber KA, Ishiyama GP, Baloh RW (2006) A longitudinal study of oculomotor function in normal older people. Neurobiol Aging 27:1346–1353

    Article  PubMed  Google Scholar 

  • Kuo HK, Leveille SG, Yu YH, Milberg WP (2007) Cognitive function, habitual gait speed, and late-life disability in the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Gerontology 53:102–110

    Article  PubMed  Google Scholar 

  • Lau HC, Rogers RD, Haggard P, Passingham RE (2004a) Attention to intention. Science 303:1208–1210

    Article  PubMed  CAS  Google Scholar 

  • Lau HC, Rogers RD, Ramnani N, Passingham RE (2004b) Willed action and attention to the selection of action. Neuroimage 21:1407–1415

    Article  PubMed  CAS  Google Scholar 

  • Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840

    Article  PubMed  CAS  Google Scholar 

  • Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J (2003) Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp 19:47–62

    Article  PubMed  Google Scholar 

  • Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56

    Article  PubMed  CAS  Google Scholar 

  • Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S (2007) Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke? Neuroimage 37:1338–1345

    Article  PubMed  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14:1186–1192

    Article  PubMed  CAS  Google Scholar 

  • Miyai I, Yagura H, Oda I, Konishi I, Eda H, Suzuki T, Kubota K (2002) Premotor cortex is involved in restoration of gait in stroke. Ann Neurol 52:188–194

    Article  PubMed  Google Scholar 

  • Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K (2003) Longitudinal optical imaging study for locomotor recovery after stroke. Stroke 34:2866–2870

    Article  PubMed  Google Scholar 

  • Miyai I, Suzuki M, Hatakenaka M, Kubota K (2006) Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res 169:85–91

    Article  PubMed  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21:99–111

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pochon JB, Levy R, Poline JB, Crozier S, Lehericy S, Pillon B, Deweer B, Le Bihan D, Dubois B (2001) The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex 11:260–266

    Article  PubMed  CAS  Google Scholar 

  • Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128:1964–1983

    Article  PubMed  Google Scholar 

  • Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187

    Article  PubMed  CAS  Google Scholar 

  • Riecker A, Grodd W, Klose U, Schulz JB, Groschel K, Erb M, Ackermann H, Kastrup A (2003) Relation between regional functional MRI activation and vascular reactivity to carbon dioxide during normal aging. J Cereb Blood Flow Metab 23:565–573

    Article  PubMed  Google Scholar 

  • Rubino FA (2002) Gait disorders. Neurologist 8:254–262

    Article  PubMed  Google Scholar 

  • Rypma B, Berger JS, D’Esposito M (2002) The influence of working-memory demand and subject performance on prefrontal cortical activity. J Cogn Neurosci 14:721–731

    Article  PubMed  Google Scholar 

  • Saager RB, Berger AJ (2005) Direct characterization and removal of interfering absorption trends in two-layer turbid media. J Opt Soc Am A Opt Image Sci Vis 22:1874–1882

    Article  PubMed  Google Scholar 

  • Schroeter ML, Zysset S, Kruggel F, von Cramon DY (2003) Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage 19:555–564

    Article  PubMed  Google Scholar 

  • Secher NH, Seifert T, Van Lieshout JJ (2008) Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 104:306–314

    Article  PubMed  CAS  Google Scholar 

  • Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR (2007) Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 6:63–74

    Article  PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  PubMed  CAS  Google Scholar 

  • Strangman G, Franceschini MA, Boas DA (2003) Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage 18:865–879

    Article  PubMed  Google Scholar 

  • Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM (2003) Physical performance measures in the clinical setting. J Am Geriatr Soc 51:314–322

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. Neuroimage 23:1020–1026

    Article  PubMed  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39:600–607

    Article  PubMed  Google Scholar 

  • Teng EL, Chui HC (1987) The Modified Mini-Mental State (3MS) examination. J Clin Psychiatry 48:314–318

    PubMed  CAS  Google Scholar 

  • Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78:929–935

    Article  PubMed  Google Scholar 

  • Viallet F, Massion J, Massarino R, Khalil R (1992) Coordination between posture and movement in a bimanual load lifting task: putative role of a medial frontal region including the supplementary motor area. Exp Brain Res 88:674–684

    Article  PubMed  CAS  Google Scholar 

  • Volpato S, Blaum C, Resnick H, Ferrucci L, Fried LP, Guralnik JM (2002) Comorbidities and impairments explaining the association between diabetes and lower extremity disability: the women’s health and aging study. Diabetes Care 25:678–683

    Article  PubMed  Google Scholar 

  • Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA (2005) Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci 229–230:89–93

    Article  PubMed  Google Scholar 

  • Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126:873–888

    Article  PubMed  CAS  Google Scholar 

  • Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F (2004) Physical activity, including walking, and cognitive function in older women. JAMA 292:1454–1461

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Brown EN, Strangman GE (2007) Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study. J Biomed Opt 12:064009

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid for “The Research Committee for Ataxic Diseases” of the Research on Measures for Intractable Diseases, Funds for Comprehensive Research on Aging and Health from the Ministry of Health, Labour and Welfare, Japan. We are grateful to the members (Mr Goho and Ms Nakai) of the NPO ATRL, Omichikai Medical Group, for their help in recruiting subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeko Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, T., Miyai, I., Suzuki, M. et al. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res 193, 445–454 (2009). https://doi.org/10.1007/s00221-008-1643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1643-y

Keywords

Navigation