Skip to main content

Advertisement

Log in

Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, α-synuclein (α-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson’s disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of α-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of α-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit α-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    PubMed  CAS  Google Scholar 

  • Arima K, Ueda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M. (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808:93–100

    PubMed  CAS  Google Scholar 

  • Bodles AM, Guthrie DJS, Greer B, Irvine GB (2001) Identification of the region of non-Abeta component (NAC) of Alzheimer’s disease amyloid responsible for its aggregation and toxicity. J Neurochem 78:384–395

    PubMed  CAS  Google Scholar 

  • Bodles AM, El-Agnaf OMA, Greer B, Guthrie DJS, Irvine GB (2004) Inhibition of fibril formation and toxicity of a fragment of α-synuclein by an N-methylated peptide analogue. Neurosci Lett 359:89–93

    PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    PubMed  Google Scholar 

  • Buchman VL, Hunter HJ, Pinon LG, Thompson J, Privalova EM, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18:9335–9341

    PubMed  CAS  Google Scholar 

  • Bussell RJr, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    Google Scholar 

  • Campion D, Martin C, Heilig R, Charbonnier F, Moreau V, Flaman JM, Petit JL, Hannequin D, Brice A, Frebourg T (1995) The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer’s disease. Genomics 26:254–247

    PubMed  CAS  Google Scholar 

  • Cappai R, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379

    PubMed  CAS  Google Scholar 

  • Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken α-helix in folded α-synuclein. J Biol Chem 278:15313–15318

    PubMed  CAS  Google Scholar 

  • Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates CSPalpha in preventing neurodegeneration. Cell 123:383–396

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    PubMed  CAS  Google Scholar 

  • Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663

    PubMed  CAS  Google Scholar 

  • Chen X, de Silva HA, Pettenati MJ, Rao PN, St. George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Ueda K, Saitoh T (1995) The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis. Genomics 26:425–427

    PubMed  CAS  Google Scholar 

  • Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201

    PubMed  CAS  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    PubMed  CAS  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563

    PubMed  CAS  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PTJ (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349

    PubMed  CAS  Google Scholar 

  • Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Lett 436:309–312

    PubMed  CAS  Google Scholar 

  • da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson’s disease-related Ala-53 to Thr mutant alpha-synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275:24065–24069

    PubMed  CAS  Google Scholar 

  • da Costa CA, Masliah E, Checler F (2003) beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with alpha-synuclein and implication for Parkinson’s disease. J Biol Chem 278:37330–37335

    PubMed  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    PubMed  CAS  Google Scholar 

  • de Rijk MC, Tzourio C, Breteler MMB, Dartigues JF, Amaducci L, Lopez Pousa S, Manubens-Bertran JM, Alperovitch A, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European Community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:10–15

    Article  PubMed  Google Scholar 

  • Duda JE, Shah U, Arnold SE, Lee VM, Trojanowski JQ (1999) The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 160:515–522

    PubMed  CAS  Google Scholar 

  • El-Agnaf OMA, Jakes R, Curran MD, Wallace A (1998a) Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of alpha-synuclein protein implicated in Parkinson’s disease. FEBS Lett 440:67–70

    CAS  Google Scholar 

  • El-Agnaf OMA, Jakes R, Curran MD, Middleton D, Ingentto R, Bianchi E, Pessi A, Neill D, Wallace A (1998b) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    CAS  Google Scholar 

  • El-Agnaf OMA, Irvine GB (2000) Review: formation and properties of amyloid-like fibrils derived from alpha-synuclein and related proteins. J Struct Biol 130:300–309

    PubMed  CAS  Google Scholar 

  • El-Agnaf OMA, Mahil DS, Patel BP, Austen BM (2000) Oligomerization and toxicity of beta-amyloid-42 implicated in Alzheimer’s disease. Biochem Biophys Res Commun 273:1003–1007

    PubMed  CAS  Google Scholar 

  • El-Agnaf OMA, Nagala S, Patel BP, Austen BM (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310:157–168

    PubMed  CAS  Google Scholar 

  • El-Agnaf OMA, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, Curran MD, Court JA, Mann DMA, Ikeda SI, Cookson MR, Hardy J, Allsop D (2003a) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947

    CAS  Google Scholar 

  • El-Agnaf OM, Walsh DM, Allsop D (2003b) Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol 2:461–462

    Google Scholar 

  • El-Agnaf OM, Paleologou KE, Greer B, Abogrein AM, King JE, Salem SA, Fullwood NJ, Benson FE, Hewitt R, Ford KJ, Martin FL, Harriott P, Cookson MR, Allsop D (2004) A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18:1315–1317

    PubMed  CAS  Google Scholar 

  • El-Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    PubMed  CAS  Google Scholar 

  • Eliezer D, Kutluay E, Bussell R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073

    PubMed  CAS  Google Scholar 

  • Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 22:110–114

    PubMed  CAS  Google Scholar 

  • Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668

    PubMed  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    PubMed  CAS  Google Scholar 

  • Fukuda T, Tanaka J, Watabe K, Numoto RT, Minamitani M (1993) Immunohistochemistry of neuronal inclusions in the cerebral cortex and brain-stem in Lewy body disease. Acta Pathol Jpn 43:545–551

    PubMed  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    PubMed  CAS  Google Scholar 

  • George JM, Jin H, Woods WS, Clayton DF (1995) Characterisation of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    PubMed  CAS  Google Scholar 

  • George JM (2001) The synucleins. Genome Biol 3:1–6

    Google Scholar 

  • Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem. 274:7619–7622

    PubMed  CAS  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    PubMed  CAS  Google Scholar 

  • Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501

    PubMed  CAS  Google Scholar 

  • Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusions. J Biol Chem 277:48984–48992

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32:213–223

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 277:11465–11472

    PubMed  CAS  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    PubMed  CAS  Google Scholar 

  • Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115

    PubMed  CAS  Google Scholar 

  • Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F Pollak P, Agid Y, Durr A, Brice A (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171

    PubMed  CAS  Google Scholar 

  • Iwai A (2000) Properties of NACP/alpha-synuclein and its role in Alzheimer’s disease. Biochim Biophys Acta 1502:95–109

    PubMed  CAS  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    PubMed  CAS  Google Scholar 

  • Iwaki H, Kageyama S, Isono T, Wakabayashi Y, Okada Y, Yoshimura K, Terai A, Arai Y, Iwamura H, Kawakita M, Yoshiki T (2004) Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma-synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci 95:955–961

    PubMed  CAS  Google Scholar 

  • Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32

    PubMed  CAS  Google Scholar 

  • Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57:759–764

    PubMed  CAS  Google Scholar 

  • Jia T, Liu YE, Liu J, Shi YE (1999) Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res 59:742–747

    PubMed  CAS  Google Scholar 

  • Jiang Y, Liu YE, Goldberg ID, Shi YE (2004) Gamma-synuclein, a novel heat-shock protein-associated chaperone, stimulates ligand-dependent estrogen receptor alpha signaling and mammary tumorigenesis. Cancer Res 64:4539–4546

    PubMed  CAS  Google Scholar 

  • Jones DH, Martin H, Madrazo J, Robinson KA, Nielsen P, Roseboom PH, Patel Y, Howell SA, Aitken A (1995) Expression and structural analysis of 14–3–3 proteins. J Mol Biol 245:375–384

    PubMed  CAS  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373

    PubMed  CAS  Google Scholar 

  • Kim TD, Paik SR, Yang CH (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry 41:13782–13790

    PubMed  CAS  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 279:25497–254502

    PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998a) Parkinson’s disease-first of two parts. N Engl J Med 339:1130–1143

    CAS  Google Scholar 

  • Lang AE, Lozano AM (1998b) Parkinson’s disease-second of two parts. N Engl J Med 339:1144–1153

    Google Scholar 

  • Lavedan C (1998) The synuclein family. Genome Res 8: 871–880

    PubMed  CAS  Google Scholar 

  • Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103:106–112

    PubMed  CAS  Google Scholar 

  • Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jakala P, Hartmann T, Price DL, Lee MK (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci USA 102:2162–2167

    PubMed  CAS  Google Scholar 

  • Li Z, Sclabas GM, Peng B, Hess KR, Abbruzzese JL, Evans DB, Chiao PJ (2004) Overexpression of synuclein-gamma in pancreatic adenocarcinoma. Cancer 101:58–65

    PubMed  CAS  Google Scholar 

  • Liu J, Spence MJ, Zhang YL, Jiang Y, Liu YE, Shi YE (2000) Transcriptional suppression of synuclein gamma (SNCG) in human breast cancer cells by the growth inhibitory cytokine oncostatin M. Breast Cancer Res Treat 62:99–107

    PubMed  CAS  Google Scholar 

  • Lücking CB, Brice A (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908

    PubMed  Google Scholar 

  • Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815

    PubMed  CAS  Google Scholar 

  • Martin FL, Williamson SJ, Paleologou KE, Hewitt R, El-Agnaf OM, Allsop D (2003) Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay. J Neurochem 87:620–630

    PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250

    PubMed  CAS  Google Scholar 

  • Matsushita M, Tomizawa K, Moriwaki A, Li ST, Terada H, Matsui H (2001) A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J Neurosci 21:6000–6007

    PubMed  CAS  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    PubMed  CAS  Google Scholar 

  • Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220

    PubMed  CAS  Google Scholar 

  • Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4:1449–1452

    PubMed  CAS  Google Scholar 

  • Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem. 274:9843–9846

    PubMed  CAS  Google Scholar 

  • Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies

  • Ninkina NN, Alimova-Kost MV, Paterson JW, Delaney L, Cohen BB, Imreh S, Gnuchev NV, Davies AM, Buchman VL (1998) Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 7:1417–1424

    PubMed  CAS  Google Scholar 

  • Ohtake H, Limprasert P, Fan Y, Onodera O, Kakita A, Takahashi H, Bonner LT, Tsuang DW, Murray IV, Lee VM, Trojanowski JQ, Ishikawa A, Idezuka J, Murata M, Toda T, Bird TD, Leverenz JB, Tsuji S, La Spada AR (2004). Beta-synuclein gene alterations in dementia with Lewy bodies. Neurology 63:805–811

    PubMed  CAS  Google Scholar 

  • Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999) Alpha-synuclein shares physiological and functional homology with 14–3–3 proteins. J Neurosci 19:5782–5791

    PubMed  CAS  Google Scholar 

  • Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J 340:821–828

    PubMed  CAS  Google Scholar 

  • Paik SR, Shin HJ, Lee JH (2000) Metal-catalyzed oxidation of alpha-synuclein in the presence of Copper(II) and hydrogen peroxide. Arch Biochem Biophys 378:269–277

    PubMed  CAS  Google Scholar 

  • Paleologou KE, Irvine GB, El-Agnaf OMA (2005) Αlpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans 33:1106–1110

    PubMed  CAS  Google Scholar 

  • Pals P, Lincoln S, Manning J, Heckman M, Skipper L, Hulihan M, Van der Broek M, De Pooter T, Cras P, Crook J, Van Broeckhoven C, Farrer MJ (2004) Alpha-synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol 56:591–595

    PubMed  CAS  Google Scholar 

  • Park SM, Jung HY, Kim TD, Park JH, Yang CH, Kim J (2002) Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein, a molecular chaperone. J Biol Chem 277:28512–28520

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio D, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    PubMed  CAS  Google Scholar 

  • Rosner M, Hengstschlager M (2006) 14-3-3 proteins are involved in the regulation of mammalian cell proliferation. Amino Acids 30:105–109

    PubMed  CAS  Google Scholar 

  • Roy S, Wolman L (1969) Ultrastructural observations in Parkinsonism. J Pathol 99:39–44

    PubMed  CAS  Google Scholar 

  • Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH (2002) Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J 16:1826–1828

    PubMed  CAS  Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees A.J Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361

    PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    PubMed  CAS  Google Scholar 

  • Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, Ross CA (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25:5544–5552

    PubMed  CAS  Google Scholar 

  • Sofic E, Lange KW, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    PubMed  CAS  Google Scholar 

  • Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun 226:672–680

    PubMed  CAS  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826

    PubMed  CAS  Google Scholar 

  • Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000a) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implications of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349

    CAS  Google Scholar 

  • Souza JM, Giasson BI, Lee VM, Ischiropoulos H (2000b) Chaperone-like activity of synucleins. FEBS Lett 474:116–119

    CAS  Google Scholar 

  • Spillantini MG, Divane A, Goedert M (1995) Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35. Genomics 27:379–381

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    PubMed  CAS  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    PubMed  CAS  Google Scholar 

  • Stefanova N, Seppi K, Scherfler C, Puschban Z, Wenning GK (2000) Depression in alpha-synucleinopathies: prevalence, pathophysiology and treatment. J Neural Transm 60: 335–343

    Google Scholar 

  • Surguchov A, McMahan B, Masliah E, Surgucheva I (2001) Synucleins in ocular tissues. J Neurosci Res 65:68–77

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    PubMed  CAS  Google Scholar 

  • Tretiakoff MC (1919) Contribution a l’etudie de l’anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaire et de la maladie de Parkinson (thesis), Paris

  • Turnbull S, Tabner BJ, El-Agnaf OMA, Moore S, Davies Y, Allsop D (2001) Alpha-synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med 30:1163–1170

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978

    PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    PubMed  CAS  Google Scholar 

  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    PubMed  CAS  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97:13003–13008

    PubMed  CAS  Google Scholar 

  • Windisch M, Hutter-Paier B, Rockenstein E, Hashimoto M, Mallory M, Masliah E (2002). Development of a new treatment for Alzheimer’s disease and Parkinson’s disease using anti-aggregatory beta-synuclein-derived peptides. J Mol Neurosci 19:63–69

    PubMed  CAS  Google Scholar 

  • Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512

    PubMed  CAS  Google Scholar 

  • Xia Y, Saitoh T, Ueda K, Tanaka S, Chen X, Hashimoto M, Hsu L, Conrad C, Sundsmo M, Yoshimoto M, Thal L, Katzman R, Masliah E (2001) Characterization of the human alpha-synuclein gene: genomic structure, transcription start site, promoter region and polymorphisms. J Alzheimers Dis 3:485–494

    PubMed  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    PubMed  CAS  Google Scholar 

  • Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human alpha-synuclein causes dopamine neuron death in rat primary culture and immortalised mesencephalon-derived cells. Brain Res 866:33–43

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael J. Fox Foundation USA and Research and Development Office, Health and Personal Social Services, Northern Ireland, for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. A. El-Agnaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer, D.A.M., Irvine, G.B. & El-Agnaf, O.M.A. Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson’s disease and related disorders. Exp Brain Res 173, 223–233 (2006). https://doi.org/10.1007/s00221-006-0539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0539-y

Keywords

Navigation