Skip to main content

Advertisement

Log in

Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The posterior cingulate cortex (PCC) has recently been implicated in the pathophysiology of schizophrenia, through both animal and human studies. We have recently shown abnormal glutamate, GABA, and muscarinic receptor binding in the PCC in schizophrenia. In addition, there is evidence for an abnormal endogenous cannabinoid system in schizophrenia. The endogenous cannabinoid system, including CB1 receptors, is proposed to play a role in modulating neurotransmission via affecting the release of a variety of neurotransmitters, (e.g. GABA). In the present study, we used quantitative autoradiography to investigate the binding of [3H]CP-55940 to CB1 receptors in the PCC in schizophrenia subjects compared to controls. A significant 25% increase in CB1 binding was found in the superficial layers (layer I, II) of the PCC of schizophrenia subjects compared to controls, none of whom had recently used cannabis. There was no statistical difference in CB1 binding in the deeper layers (layers III–VI) between the two groups. There were no significant correlations between CB1 binding density and age, PMI, pH, brain weight, freezer storage time, or final recorded antipsychotic drug dose. These results show an increase in CB1 receptor density in the PCC in schizophrenia, and therefore provide support for a role of the endogenous cannabinoid system in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  PubMed  CAS  Google Scholar 

  • Biegon A, Kerman IA (2001) Autoradiographic study of pre- and postnatal distribution of cannabinoid receptors in human brain. Neuroimage 14:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Cloez-Tayarani I, Cardona A, Rousselle JC, Massot O, Edelman L, Fillion G (1997) Autoradiographic characterization of [3H]-5-HT-moduline binding sites in rodent brain and their relationship to 5-HT1B receptors. Proc Natl Acad Sci USA 94:9899–9904

    Article  PubMed  CAS  Google Scholar 

  • Dean B, Sundram S, Bradbury R, Scarr E, Copolov D (2001) Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 103:9–15

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones (erratum appears in Mol Pharmacol 1994 Aug; 46(2):397). Mol Pharmacol 42:838–845

    PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318

    Article  PubMed  CAS  Google Scholar 

  • Harper C, Garrick T, Matsumoto I, Pfefferbaum A, Adalsteinsson E, Sullivan E, Dodd P, Lewohl J, Butterworth R (2003) How important are brain banks for alcohol research? Alcoholism Clin Exp Res 27:310–323

    Article  Google Scholar 

  • Hartman M, Steketee MC, Silva S, Lanning K, McCann H (2003) Working memory and schizophrenia: evidence for slowed encoding. Schizophr Res 59:99–113

    Article  PubMed  Google Scholar 

  • Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res 71(2–3):249–262

    Article  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Iversen L (2003) Cannabis and the brain. Brain 126:1252–1270

    Article  PubMed  Google Scholar 

  • Katona I, Sperlagh B, Magloczky Z, Santha E, Kofalvi A, Czirjak S, Mackie K, Vizi ES, Freund TF (2000) GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 100:797–804

    Article  PubMed  CAS  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D (1999) Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10:1665–1669

    Article  PubMed  CAS  Google Scholar 

  • Mai J, Asscheuer J, Pazinos G (1997) Atlas of the Human Brain. Academic, San Diego

    Google Scholar 

  • Newell KA, Zavitsanou K, Huang XF (2005) Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients. Neuroreport 16:1363–1367

    Article  PubMed  CAS  Google Scholar 

  • Newell KA, Zavitsanou K, Kum Jew S, Huang XF (2006) Alterations of Muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuro-Psychoph (in press)

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia (see comment). Arch Gen Psychiat 52:998–1007

    PubMed  CAS  Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs (see comment). Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Ong WY, Mackie K (1999) A light and electron microscopic study of the CB1 cannabinoid receptor in primate brain. Neuroscience 92:1177–1191

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  CAS  Google Scholar 

  • Reibaud M, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A (1999) Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 379: R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Butman M, Koistinaho J, Aardalen K, Nakki R, Massa SM, Swanson RA, Sagar SM (1994) Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience 62:1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Sundram S, Bradbury R, Copolov D, Dean B (2000) The effects of antipsychotic drug treatment on cannabinoid receptors in rat brain. In: Proceedings of the Australian neuroscience society, Melbourne, Australia, vol 11, p 75

  • Tendolkar I, Weis S, Guddat O, Fernandez G, Brockhaus-Dumke A, Specht K, Klosterkotter J, Reul J, Ruhrmann S (2004) Evidence for a dysfunctional retrosplenial cortex in patients with schizophrenia: a functional magnetic resonance imaging study with a semantic-perceptual contrast. Neurosci Lett 369:4–8

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443

    PubMed  CAS  Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Garrick T, Huang XF (2004) Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuro-Psychoph 28:355–360

    Article  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice (see comment). Proc Natl Acad Sci USA 96:5780–5785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the St. George Foundation, and the Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD) utilizing infrastructure funding from NSW Health. Post-mortem brain tissues were received from the NSW Tissue Resource Center, which is supported by the University of Sydney, NISAD, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health. The Beta Imager was provided with funds raised by the Wollongong Lord Mayor’s Schizophrenia Awareness Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Newell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newell, K.A., Deng, C. & Huang, XF. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res 172, 556–560 (2006). https://doi.org/10.1007/s00221-006-0503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0503-x

Keywords

Navigation