Skip to main content
Log in

Longer fixation duration while viewing face images

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JR (1998) Social stimuli and social rewards in primate learning and cognition. Behav Process 42:159–175

    Article  Google Scholar 

  • Andrew RJ (1963) Evolution of facial expressions. Science 142:1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Andrews TJ, Coppola DM (1999) Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments. Vis Res 39:2947–2953

    Article  PubMed  CAS  Google Scholar 

  • Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565

    Article  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  PubMed  CAS  Google Scholar 

  • Bruce V, Young A (1998) In the eye of the beholder. Oxford University, New York

    Google Scholar 

  • Burton AM, Bruce V, Dench N (1993) What’s the difference between men and women? Evidence from facial measurement. Perception 22:153–176

    Article  PubMed  CAS  Google Scholar 

  • Cootes TF, Taylor CJ, Cooper DH, Graham J (1992) Training models of shapes from sets of examples. In: Proceedings of British machine vision conference, pp 9–18

  • Cootes TF, Taylor CJ (1992) Active shape models, ‘Smart Snakes’. In: Proceedings of British machine vision conference, pp 266–275

  • Einhäuser W, König P (2003) Does luminance-contrast contribute to a saliency map for overt visual attention? Eur J Neurosci 17:1089–1097

    Article  PubMed  Google Scholar 

  • Emery NJ (2000) The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev 24:581–604

    Article  PubMed  CAS  Google Scholar 

  • Epelboim J, Steinman R, Kowler E, Edwards M, Pizlo Z, Erkelens C, Collewijn H (1995) The function of visual search and memory in sequential looking tasks. Vis Res 35:3401–3422

    Article  PubMed  CAS  Google Scholar 

  • Farah MJ (1996) Is face recognition ‘special’? Evidence from neuropsychology. Behav Brain Res 76:181–189

    Article  PubMed  CAS  Google Scholar 

  • Fellous JM (1997) Gender discrimination and prediction on the basis of facial metric information. Vis Res 37:1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394

    PubMed  CAS  Google Scholar 

  • Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3:191–197

    Article  PubMed  CAS  Google Scholar 

  • Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2:568–573

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Benson PJ (1998) Involuntary eye movements in response to first- and second-order motion. Neuroreport 9:3543–3548

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Robertson RG, Mahmoodi S, Tadmor Y, Young MP (2003) How do monkeys view faces? – A study of eye movements. Exp Brain Res 150:363–374

    PubMed  Google Scholar 

  • Henderson JM (2003) Human gaze control during real-world scene perception. Trends Cognit Sci 7:498–504

    Article  Google Scholar 

  • Henderson JM, Hollingworth A (1999) High-level scene perception. Annu Rev Psychol 50:243–271

    Article  PubMed  CAS  Google Scholar 

  • Henderson JM, Weeks PA, Hollingworth A (1999) Effects of semantic consistency on eye movements during scene viewing. J Exp Psychol Hum Percept Perform 25:210–228

    Article  Google Scholar 

  • Hooge IThC, Erkelens CJ (1998) Adjustment of fixation duration in visual search. Vis Res 38:1295–1302

    Article  Google Scholar 

  • Itier RJ, Taylor MJ (2004) N170 or N1? Spatial temporal differences between object and face processing using ERPs. Cerebr Cortex 14:132–142

    Article  Google Scholar 

  • Jacobs AM (1986) Eye-movement control in visual search: How direct is visual span control? Percept Psychophys 39:47–58

    PubMed  CAS  Google Scholar 

  • Johnson MH, Morton J (1991) Biology and cognitive development: the case of face recognition. Blackwell, Oxford

    Google Scholar 

  • Kreyszig E (1999) Advanced engineering mathematics. Wiley, New York

    Google Scholar 

  • Krieger G, Rentschler I, Hauske G, Schill K, Zetzsche C (2000) Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. Spat Vis 13:201–214

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Le Grand R, Mondloch CJ (2002) The many faces of configural processing. Trends Cogn Sci 6:255–260

    Article  PubMed  Google Scholar 

  • McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9:605–610

    Article  Google Scholar 

  • Mendelson MJ, Haith MM, Goldman-Rakic PS (1982) Face scanning and responsiveness to social cues in infant rhesus monkeys. Dev Psychol 18:222–228

    Article  Google Scholar 

  • Moffit K (1980) Evaluation of fixation duration in visual search. Percept Psychophys 274:370–372

    Google Scholar 

  • Moscovitch M, Winocur G, Behrmann M (1997) What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J Cogn Neurosci 9:555–604

    Article  Google Scholar 

  • Parkhurst D, Law K, Niebur E (2002) Modeling the role of salience in the allocation of overt visual attention. Vis Res 42:107–123

    Article  PubMed  Google Scholar 

  • Parkhurst DJ, Niebur E (2003) Scene content selected by active vision. Spat Vis 16:125–154

    Article  PubMed  Google Scholar 

  • Parr LA, Winslow JT, Hopkins WD (2000) Recognizing facial cues: individual discrimination by chimpanzees (pan troglodytes) and rhesus monkeys (macaca mulatta). J Comp Psychol 114:1–14

    Article  Google Scholar 

  • Perrett DI, May KA, Yoshikawa S (1994) Facial shape and judgements of female attractiveness. Nature 368:239–242

    Article  PubMed  CAS  Google Scholar 

  • Pollatsek A, Rayner K, Balota DA (1986) Inferences about eye movement control from the perceptual span in reading. Percept Psychophys 40:123–130

    PubMed  CAS  Google Scholar 

  • Reinagel P, Zador AM (1999) Natural scene statistics at the centre of gaze. Network Comput Neural Syst 10:341–350

    Article  CAS  Google Scholar 

  • Rosenfeld SA, Van Hoesen GW (1979) Face recognition in the rhesus monkey. Neuropsychologia 17:503–509

    Article  PubMed  CAS  Google Scholar 

  • Rossion B, Gauthier I (2002) How does the brain process upright and inverted faces? Behav Cogn Neurosci Rev 1:63–75

    Article  PubMed  Google Scholar 

  • Rousselet GA, Mace MJ, Fabre-Thorpe M (2004) Spatiotemporal analyses of the N170 for human faces, animal faces and objects in natural scenes. Neuroreport 15:2607–2611

    Article  PubMed  Google Scholar 

  • Ruderman DL, Bialek W (1994) Statistics of natural images: scaling in the woods. Phys Rev Lett 73:814–817

    Article  PubMed  Google Scholar 

  • Salthouse TA, Ellis CL, Diener DC, Somberg BL (1981) Stimulus processing during eye fixation. J Exp Psychol Hum Percept Perform 73:611–623

    Google Scholar 

  • Sergent J, Signoret JL (1992) Varieties of functional deficits in prosopagnosia. Cerebr Cortex 2:375–388

    Article  CAS  Google Scholar 

  • Sergent J, Otha S, MacDonald B (1992) Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115:15–36

    Article  PubMed  Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Curr Opin Neurobiol 7:523–529

    Article  PubMed  CAS  Google Scholar 

  • Tarr MJ, Cheng YD (2003) Learning to see faces and objects. Trends Cogn Sci 7:23–30

    Article  PubMed  Google Scholar 

  • Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003) Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989–995

    Article  PubMed  CAS  Google Scholar 

  • Turati C, Simion F, Milani I, Umiltà C (2002) Newborns’ preference for faces: what is crucial? Dev Psychol 38:875–882

    Article  PubMed  Google Scholar 

  • van Diepen PMJ (1995) Chronometry of foveal information extraction during scene perception. In: Findlay JM, Walker R, Kentridge RW (eds) Eye movement research: mechanisms, processes and applications. Elsevier, North-Holland, pp 349–362

    Google Scholar 

  • Valentine T (1988) Upside-down faces: a review of the effects of inversion upon face recognition. Br J Psychol 79:471–491

    PubMed  Google Scholar 

  • Yarbus A (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81:41–45

    Article  Google Scholar 

  • Young MP, Yamane S (1992) Sparse population coding of faces in inferior temporal cortex. Science 256:1327–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Wellcome Trust, HFSPO and EU FP5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, K., Mahmoodi, S., Robertson, R.G. et al. Longer fixation duration while viewing face images. Exp Brain Res 171, 91–98 (2006). https://doi.org/10.1007/s00221-005-0248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0248-y

Keywords

Navigation