Skip to main content
Log in

A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) exhibits functions unrelated to the catalysis of acetylcholine (ACh) in particular during development. Although the underlying mechanism(s) is presently unknown, a candidate peptide fragment (AChE-peptide) has recently been identified, and been shown to induce a continuum of apoptotic and necrotic neuronal cell death in rat hippocampal organotypic cultures. The aim of this study was to trace the cell death pathway initiated by AChE-peptide. Using specific antagonists, it was possible to track a series of cellular events following application of 1 nM AChE-peptide: NMDA receptor activation, opening of the L-type voltage gated calcium channel, activation of calcium/calmodulin kinase II, generation of reactive oxygen species and caspase activation. Pharmacological interception at any stage of this cascade blocked the effect of 1 nM AChE-peptide on neurite retraction. Lactate dehydrogenase (LDH) release, a marker for cell lysis, was unaffected by 1 nM AChE-peptide. In contrast, cell death induced by 1 mM AChE-peptide, monitored as neurite retraction and increased LDH efflux, was not offset by any drug treatment. These data suggest that nanomolar concentrations of AChE-peptide exhibit pathophysiological activity via an apoptotic pathway that could play an important role in neuronal development and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B.
Fig. 2A,B.
Fig. 3A,B.
Fig. 4A,B.
Fig. 5A,B.
Fig. 6.

Similar content being viewed by others

References

  • Amoroso S, D’Alessio A, Sirabella R, Di Renzo G, Annunziato L (2002) Calcium-independent caspase-3 but not calcium-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis. J Neurosci Res 68:454–462

    Article  CAS  PubMed  Google Scholar 

  • Anegawa NJ, Guttman RP, Grant ER, Lindstrom J, Lynch DR (2000) N-Methyl-d-aspartate receptor mediated toxicity in nonneuronal cell lines: characterisation using fluorescent measures of cell viability and reactive oxygen species. Brain Res Mol. Brain Res 77:163–175

    Article  CAS  Google Scholar 

  • Appleyard ME (1994) Non-cholinergic functions of acetylcholinesterase. Biochem Soc Trans 22:749–755

    CAS  PubMed  Google Scholar 

  • Boutillier AL, Kienlen-Campard P, Loeffler JP (1999) Depolarisation regulates cyclin D1 degradation and neuronal apoptosis: a hypothesis about the role of the ubiquitin/proteasome signalling pathway. Eur J Neurosci 11: 441–448

    Article  CAS  PubMed  Google Scholar 

  • Bucclantini M, Giannoni E, Fabrizio C, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated calcium channels. Annu Rev Cell Dev Biol 16:521–555

    CAS  PubMed  Google Scholar 

  • Chan J, Quik M (1993) A role for the nicotinic α-bungarotoxin receptor in neurite outgrowth in PC12 cells. Neuroscience 56:441–451

    Article  CAS  PubMed  Google Scholar 

  • Clague JR, Langer GA (1994) The pathogenesis of free radical-induced calcium leak in cultured rat cardiomyocytes. J Mol Cell Cardiol 26:11–21

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–694

    CAS  PubMed  Google Scholar 

  • Davies J, Watkins JC (1982) Actions of d and l forms of 2-amino-5-phosphovalerate and 2-amino-4-phosphobutyrate in the cat spinal cord. Brain Res 235:378–386

    CAS  PubMed  Google Scholar 

  • Day T, Greenfield SA (2002) A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: molecular mechanisms. Neuroscience 111:649–656

    Article  CAS  PubMed  Google Scholar 

  • Day T, Greenfield SA (2003) Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp Brain Res (in press)

  • De Garcia DJ, Kumar R, Owen CR, Krause GS, White BC (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb. Blood Flow Metab 22:127–141

    PubMed  Google Scholar 

  • Dickie BGM, Holmes C, Greenfield SA (1996) Neurotoxic and neurotrophic effects of chronic NMDA exposure upon mesencephalic dopaminergic neurons in organotypic culture. Neuroscience 72:731–741

    Article  CAS  PubMed  Google Scholar 

  • Dykens JA (1994) Isolated cerebral and cerebellar mitichondria produce free radicals when exposed to elevated calcium and sodium: implications for neruodegeneration. J Neurochem 63:584–591

    CAS  PubMed  Google Scholar 

  • Eimerl S, Schramm M (1994) The quality of calcium that appears to induce neuronal death. J Neurochem 62:1223–1226

    CAS  PubMed  Google Scholar 

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Google Scholar 

  • Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    PubMed  Google Scholar 

  • Gähwiler B.H (1984) Development of the hippocampus in vitro: cell types, synapses and receptors. Neuroscience 11:751–760

    Article  PubMed  Google Scholar 

  • Giovanni A, Wirtz-Brugger F, Keramaris E, Slack R, Park DS (1999) Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F-DP, in B-amyloid-induced neuronal death. J Biol Chem 274:19011–19016

    Article  CAS  PubMed  Google Scholar 

  • Greenfield SA (1996) Non-classical actions of acetylcholinesterase: role in cellular differentiation, tumorigenesis and Alzheimer’s disease: a critique. Neurochem Int 28:485–490

    Article  CAS  PubMed  Google Scholar 

  • Greenfield SA, Vaux D (2002) Parkinson’s disease, Alzheimer’s disease and motor neuron disease: identifying a common mechanism. Neuroscience 113:485–492

    Article  CAS  PubMed  Google Scholar 

  • Grundman M (2000) Vitamin E and Alzheimer’s disease: the basis for additional clinical trials. Am. J Clin Nutr 71 [Suppl]:630s–636s

  • Guo Q, Sebastain L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid β-peptide toxicity: Central roles of superoxide production and caspase activation. J Neurochem 72:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Han BH, Xu D, Choi J, Han Y, Xanthoudakis S, Roy S, Tam J, Vaillancourt J, Colucci J, Siman R, Giroux A, Robertson GS, Zamboni R, Nicholson DW, Holtzman DM (2002) Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. J Biol Chem 277:30128–30136

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Sugimoto M (1999) Activation of caspase-3 in β-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res 842:311–323

    Article  CAS  PubMed  Google Scholar 

  • Heng J.E, Zurakowski D, Vorwerk C.K, Grosskreutz C.L, Dreyer E.B (1999) Cation channel control of neurite morphology. Brain Res Dev Brain Res 113:67–73

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, Jones SA, Budd TC, Greenfield SA (1996) A non-cholinergic, trophic action of recombinant acetylcholinesterase on mid-brain dopaminergic neruons. J Neurosci Res 49:1–12

    Google Scholar 

  • Huang H, Ou H, Hseih S (2000) Antioxidiants prevent amyloid peptide-induced apoptosis and alteration of calcium homeostasis in cultured cortical neurons. Life Sci 66:1879–1892

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA, Stadelmann C (2001) Problems of cell death in neurodegeneration and Alzheimer’s disease. J Alzheimers Dis 3:31–40

    CAS  PubMed  Google Scholar 

  • Joseph JA, Strain JG, Jimenez ND, Fisher D (1997) Oxidant injury on PC12 cells—A possible model of calcium “dysregulation” in ageing: I. Selectivity of protection against oxidative stress. J Neurochem 69:1252–1258

    CAS  PubMed  Google Scholar 

  • Kim PK, Kwon YG, Chung HT, Kim YM (2002) Regulation of caspases by nitric oxide. Ann NY Acad Sci 962:42–52

    CAS  PubMed  Google Scholar 

  • Le WD, Colom LV, Xie WJ, Smith G, Alexianu M, Appel SH (1995) Cell death induced by β amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 686:49–60

    Article  CAS  PubMed  Google Scholar 

  • Lei SZ, Pan Z, Aggarwal SK, Chen HV, Hartman J, Sucher NJ, Lipton SA (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor channel complex. Neuron 8:1087–1099

    CAS  PubMed  Google Scholar 

  • Lukas RJ, Lucero L, Buisson B, Galzi JL, Puchacz E, Fryer JD, Changeaux JP, Bertrand D (2001) Neurotoxicity of channel mutations in heterologously expressed α7-nicotinic acetylcholine receptor. Eur J Neurosci 13:1849–1860

    Article  CAS  PubMed  Google Scholar 

  • Marshall K, Reitter R.J, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21: 307–315

    Article  CAS  PubMed  Google Scholar 

  • Mironov SL, Richter DW (2000) Hypoxic modulation of L-type calcium channels in inspiratory brainstem neurones: intracellular signalling pathways and metabotropic glutamate receptors. Brain Res 869:166–177

    CAS  PubMed  Google Scholar 

  • Monji A, Utsumi H, Ueda T, Imoto T, Yoshida I, Hashioka S, Tashiro K, Tashiro N (2001) The relationship between the aggregational state of the β-amyloid peptides and free radical generation by the peptides. J Neurochem 77:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Montal M (1998) Mitochondria, glutamate neurotxicity and the death cascade. Biochim Biophys Acta 1366:113–126

    Article  CAS  PubMed  Google Scholar 

  • Moore JD, Rothwell NJ, Gibson RM (2002) Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br J Pharmacol 135:1069–1077

    CAS  PubMed  Google Scholar 

  • Moya E, Blagbrough IS (1996) Efficient syntheses of polyamine and polyamine amide voltage-sensitive calcium channel blockers: FTX-3.3 and sFTX-3.3. J Pharm Pharmacol 48:179–182

    CAS  PubMed  Google Scholar 

  • Nagy ZS, Esiri MM, Smith AD (1998) The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 87:731–739

    Google Scholar 

  • Ohkuma S, Katsura M, Higo K, Hara A, Tarumi C, Ohgi T (2001) Peroxynitrite affects calcium influx through voltage-dependent calcium channels. J Neurochem 76:341–350

    Article  CAS  PubMed  Google Scholar 

  • Okabe E, Odajima C, Taga R, Kukreja R.C, Hess ML, Ito H (1988) The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum. Mol Pharmacol 34:388–394

    CAS  PubMed  Google Scholar 

  • Park DS, Morris EJ, Greene LA, Geller HM (1997) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17:1256–1270

    CAS  PubMed  Google Scholar 

  • Perez-Velazquez JL, Frantseva MV, Carlen PL (1997) In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J Neurosci 17:9085–9094

    CAS  PubMed  Google Scholar 

  • Pugh PC, Berg DK (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin mediate neurite retraction in a calcium-dependent manner. J Neurosci 14:889–896

    CAS  PubMed  Google Scholar 

  • Raina AK, Monteiro MJ, McShea A, Smith MA (1999) The role of cell cycle-mediated events in Alzheimer’s disease. Int J Exp Pathol 80:71–76

    Article  CAS  PubMed  Google Scholar 

  • Raina AK, Zhu X, Rottkamp CA, Monteiro M, Takeda A, Smith MA (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J Neurosci Res 61:128–133

    Article  CAS  PubMed  Google Scholar 

  • Ramassamy C, Averill D, Beffert U, Theroux L, Lussier-Cacon S, Cohn JS, Christen Y, Schoofs A, Davignon J, Poirier J (2000) Oxidative insults are associated with apolipoprotein E genotype in Alzheimer’s disease brain. Neurobiol Dis 7:23–37

    Article  CAS  PubMed  Google Scholar 

  • Reiter R, Tang L, Garcia JJ, Muñoz-Hoyos (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60:2255–2271

    CAS  PubMed  Google Scholar 

  • Reiter R, Tan D, Cabrera J, D’Arpa D, Sainz RM, Mayo JC, Ramos S (1999) The oxidant/antioxidant network: role of melatonin. Biol Signals Recept 8:56–63

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Suzuki K, Tanaka S, Koike T (1999) Up-regulation of cylcin D1 occurs in apoptosis of immature but not mature cerebellar granule neurons in cultures. J Neurosci Res 58:396–406

    CAS  PubMed  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  • Soderling TR, Fukunaga K, Rich DP, Fong YL, Smith K, Colbran RJ (1990) Regulation of brain Ca2+/calmodulin-dependent protein kinase II. Adv Second Messenger Phosphoprotein Res 24:206–211

    CAS  PubMed  Google Scholar 

  • Sombati S, Coulter DA, DeLorenzo RJ (1991) Neurotoxic activation of glutamate receptors induces an extended neuronal depolarisation in cultured hippocampal neurons. Brain Res 566:316–319

    Article  CAS  PubMed  Google Scholar 

  • Spedding M, Paoletti R (1992) III. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44:363–376

    CAS  PubMed  Google Scholar 

  • Ueda K, Shinohara S, Yagami T, Asakura K, Kawasaki K (1997) Amyloid β protein potentiates calcium influx through L-type voltage sensitive calcium channels: a possible involvement of free radicals. J Neurochem 68:265–271

    CAS  PubMed  Google Scholar 

  • Webb CP, Nedergaard S, Giles K, Greenfield SA (1996) Involvement of the NMDA receptor in a non-cholinergic action of acetylcholinesterase in guinea-pig substantia nigra pars compacta neurons. Eur J Neurosci 8:837–841

    CAS  PubMed  Google Scholar 

  • Zhang C, Shen W, Zhang G (2002) N-methyl-d-aspartate receptor and L-type voltage-gated calcium channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia. Neurosci Lett 328:265–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Synaptica Ltd. (Oxford, UK) for support, Dr Steven Butcher for helpful comments, and Kevin Pryor for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Greenfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, T., Greenfield, S.A. A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp Brain Res 153, 334–342 (2003). https://doi.org/10.1007/s00221-003-1567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1567-5

Keywords

Navigation