Skip to main content
Log in

Equivariant Comparison of Quantum Homogeneous Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the quantum homogeneous spaces of the q-deformation of simply connected simple compact Lie groups and their Poisson–Lie quantum subgroups. We prove the deformation invariance in the equivariant KK-theory with respect to the translation action by maximal tori. This extends a result of Neshveyev and Tuset to the equivariant setting. As applications, we prove the ring isomorphism of the K-homology of G q with respect to the coproduct of C(G q ), and an analogue of the Borsuk–Ulam theorem for quantum spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Astérisque, No. 32–33, Paris: Soc. Math. France 1976, pp. 43–72

  2. Baaj S., Skandalis G.: Unitaires multiplicatifs et dualité pour les produits croisés de C *-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4), 425–488 (1993)

    MathSciNet  Google Scholar 

  3. Baum, P., Hajac, P.M.: The Galois and K-theory of the Klein-Podles bottle. In preparation

  4. Bauval A.: RKK(X)-nucléarité (d’après G. Skandalis). K-Theory 13(1), 23–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casson A., Gottlieb D.H.: Fibrations with compact fibres. Amer. J. Math. 99(1), 159–189 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Echterhoff S., Nest R., Oyono-Oyono H.: Fibrations with noncommutative fibers. J. Noncommut. Geom. 3(3), 377–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Emerson H.: Lefschetz numbers for C*-algebras. Canad. Math. Bull. 54(1), 82–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb D.H.: The Lefschetz number and Borsuk-Ulam theorems. Pacific J. Math. 103(1), 29–37 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hodgkin, L.: The equivariant Künneth theorem in K-theory. In: Topics in K-theory. Two Independent Contributions, Lecture Notes in Math., Vol. 496, Berlin: Springer, 1975, pp. 1–101

  10. Hong J.H., Szymański W.: Quantum spheres and projective spaces as graph algebras. Commun. Math. Phys. 232(1), 157–188 (2002)

    Article  ADS  MATH  Google Scholar 

  11. Kasparov G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Korogodski, L. I., Soibelman, Y. S.: Algebras of functions on quantum groups. Part I, Mathematical Surveys and Monographs, Vol. 56, Providence, RI: Amer. Math. Soc., 1998

  13. Lu J.-H.: Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat Poisson structure on G/B. Transform. Groups 4(4), 355–374 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matoušek, J.: Using the Borsuk-Ulam theorem, Universitext, Berlin: Springer-Verlag, 2003

  15. McLeod, J.: The Kunneth formula in equivariant K-theory. In: Algebraic Topology, (Waterloo, 1978) (Proc. Conf., Univ.Waterloo,Waterloo, Ont., 1978), Berlin: Springer, 1979, pp. 316–333

  16. Meyer R., Nest R.: The Baum-Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meyer R., Nest R.: An analogue of the Baum-Connes isomorphism for coactions of compact groups. Math. Scand. 100(2), 301–316 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Nagy, G.: Deformation quantization and K-theory. In: Perspectives on Quantization (South Hadley, MA, 1996), Providence, RI: Amer. Math. Soc., 1998, pp. 111–134

  19. Neshveyev, S., Tuset, L.: Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the category of Uq(g)-modules. http://arxiv.org/abs/0711.4302v1 [math.QA], 2007

  20. Neshveyev, S., Tuset, L.: K-homology class of the Dirac operator on a compact quantum group. http://arxiv.org/abs/1102.0248v1 [math.OA], 2011

  21. Neshveyev, S., Tuset, L.: Quantized algebras of functions on homogeneous spaces with Poisson stabilizers. http://arxiv.org/abs1103.4346v2 [math.OA], 2011

  22. Nest R., Voigt C.: Equivariant Poincaré duality for quantum group actions. J. Funct. Anal. 258(5), 1466–1503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pimsner, M.V.: A class of C *-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z. In: Free Probability Theory (Waterloo, ON, 1995), Providence, RI: Amer. Math. 1997, pp. 189–212

  24. Podleś P.: Quantum spheres. Lett. Math. Phys. 14(3), 193–202 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i Analiz 1(1), 178–206 (1989). Translation in Leningrad Math. J. 1(1), 193–225 (1990)

  26. Rosenberg, J., Schochet, C.: The The Künneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory. Mem. Amer. Math. Soc. 62, no. 348, Providence, RI: Amer. Math. Soc., 1986

  27. Snaith V.P.: On the Kunneth formula spectral sequence in equivariant K-theory. Proc. Cambridge Philos. Soc. 72, 167–177 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Steinlein, H.: Borsuk’s antipodal theorem and its generalizations and applications: a survey. In: Méthodes topologiques en analyse non linéaire, Montreal, QC: Presses Univ. Montréal, Montreal, QC, 1985, pp. 166–235

  29. Vaes S.: A new approach to induction and imprimitivity results. J. Funct. Anal. 229(2), 317–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vaksman, L.L., Soĭbel′man, Ya.S.: Algebra of functions on the quantum group SU(n + 1), and odd-dimensional quantum spheres. Algebra i Analiz 2(5), 101–120 (1990). Translation in Leningrad Math. J. 2(5), 1023–1042 (1991)

  31. Vergnioux, R.: KK-théorie équivariante et opératour de Julg-Valette pour les groupes quantiques. Ph.D. Thesis, Université Paris Diderot-Paris 7, 2002

  32. Voigt C.: The Baum-Connes conjecture for free orthogonal quantum groups. Adv. Math. 227, 1873–1913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamashita.

Additional information

Communicated by Y. Kawahigashi

Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Alge bras and Conformal Field Theory”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, M. Equivariant Comparison of Quantum Homogeneous Spaces. Commun. Math. Phys. 317, 593–614 (2013). https://doi.org/10.1007/s00220-012-1594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1594-9

Keywords

Navigation