Skip to main content
Log in

Subfactors of Index Less Than 5, Part 3: Quadruple Points

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

One major obstacle in extending the classification of small index subfactors beyond \({3 +\sqrt{3}}\) is the appearance of infinite families of candidate principal graphs with 4-valent vertices (in particular, the “weeds” \({\mathcal{Q}}\) and \({\mathcal{Q}'}\) from Part 1 (Morrison and Snyder in Commun. Math. Phys., doi:10.1007/s00220-012-1426-y, 2012). Thus instead of using triple point obstructions to eliminate candidate graphs, we need to develop new quadruple point obstructions. In this paper we prove two quadruple point obstructions. The first uses quadratic tangles techniques and eliminates the weed \({\mathcal{Q}'}\) immediately. The second uses connections, and when combined with an additional number theoretic argument it eliminates both weeds \({\mathcal{Q}}\) and \({\mathcal{Q}'}\) . Finally, we prove the uniqueness (up to taking duals) of the 3311 Goodman-de la Harpe-Jones subfactor using a combination of planar algebra techniques and connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asaeda, M., Haagerup, U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({(5+\sqrt{17})/2}\) . Commun. Math. Phys. 202(1), 1–63 (1999). http://arxiv.org/abs/math/9803044v5

  2. Asaeda, M., Yasuda, S.: On Haagerup’s list of potential principal graphs of subfactors. Commun. Math. Phys. 286(3), 1141–1157 (2009). http://arxiv.org/abs/0711.4144v1

    Google Scholar 

  3. Bigelow, S.: Skein theory for the ADE planar algebras. J. Pure Appl. Algebra 214(5), 658–666 (2010). http://arxiv.org/abs/0903.0144

    Google Scholar 

  4. Bisch, D.: On the structure of finite depth subfactors. In: Algebraic methods in operator theory, Boston, MA: Birkhäuser Boston, 1994, pp. 175–194

  5. Bisch D.: Principal graphs of subfactors with small Jones index. Math. Ann. 311(2), 223–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. To appear Acta Mathematica, available at http://arxiv.org/abs/0909.4099v2 [math.OA], 2011

  7. Coste A., Gannon T.: Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B 323(3-4), 316–321 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  8. Calegari, F., Morrison, S., Snyder, N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011). http://arxiv.org/abs/1004.0665

    Google Scholar 

  9. de Boer J., Goeree J.: Markov traces and II 1 factors in conformal field theory. Commun. Math. Phys. 139(2), 267–304 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press, 1998

  11. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. of Math. (2) 162(2), 581–642 (2005). http://arxiv.org/abs/math/0203060

    Google Scholar 

  12. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and towers of algebras, Volume 14 of Mathematical Sciences Research Institute Publications. New York: Springer-Verlag, 1989

  13. Gnerre S.: An explicit formula for fusion rules. Int. Math. J. 1(1), 1–8 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Greenough, J.: Monoidal 2-structure of bimodule categories. J. Algebra 324(8), 1818–1859 (2010). http://arxiv.org/abs/0911.4979

    Google Scholar 

  15. Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] < 3 + \sqrt2}\) . In: Subfactors (Kyuzeso, 1993). River Edge, NJ: World Sci. Publ., 1994, pp. 1–38

  16. Izumi M.: The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, V.F.R.: Planar algebras, I. http://arxiv.org/abs/math/9909027v1 [math.OA], 1999

  18. Jones, V.F.R.: The annular structure of subfactors. In: Essays on geometry and related topics, Vol. 1, 2, Volume 38 of Monogr. Enseign. Math. Geneva: Enseignement Math., 2001, pp. 401–463

  19. Jones, V.F.R.: Quadratic tangles in planar algebras, 2003, available at http://arxiv.org/abs/1007.1158v2 [math.OA], 2010

  20. Kawahigashi Y.: Classification of paragroup actions in subfactors. Publ. Res. Inst. Math. Sci. 31(3), 481–517 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kauffman, L.H., Lins, S.L.: Temperley-Lieb recoupling theory and invariants of 3-manifolds, Volume 134 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 1994

  22. Kodiyalam V., Sunder V.S.: Flatness and fusion coefficients. Pacific J. Math. 201(1), 177–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morrison, S., Penneys, D., Peters, E., Snyder, N.: Classification of subfactors of index less than 5, part 2: triple points. International Journal of Mathematics, 2010. http://arxiv.org/abs/1007.2240v2, accepted June 28 2011, doi:10.1142/S0129167x11007586, 2012

  24. Morrison, S., Snyder, N.: Subfactors of index less than 5, part 1: the principal graph odometer. Commun. Math. Phys., 2010. http://arxiv.org/abs/1007.1730, accepted June 28 2011, doi:10.1007/s00220-012-1426-y, 2012

  25. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, Vol. 2, Volume 136 of London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 1988, pp. 119–172

  26. Ocneanu, A.: Operator algebras, topology and subgroups of quantum symmetry—construction of subgroups of quantum groups. In: Taniguchi Conference on Mathematics Nara ’98, Volume 31 of Adv. Stud. Pure Math., Tokyo: Math. Soc. Japan, 2001, pp. 235–263

  27. Penneys, D., Tener, J.: Classification of subfactors of index less than 5, part 4: cyclotomicity. International Journal of Mathematics, 2010, accepted June 28 2011, available at http://arxiv.org/abs/1010.3797v2 [math.OA], 2011

  28. Tuba, I., Wenzl, H.: On braided tensor categories of type BCD. J. Reine Angew. Math. 581, 31–69 (2005). http://arxiv.org/abs/math/0301142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Morrison.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, M., Jones, V.F.R., Morrison, S. et al. Subfactors of Index Less Than 5, Part 3: Quadruple Points. Commun. Math. Phys. 316, 531–554 (2012). https://doi.org/10.1007/s00220-012-1472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1472-5

Keywords

Navigation