Skip to main content
Log in

On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove sharp pointwise t −3 decay for scalar linear perturbations of a Schwarzschild black hole without symmetry assumptions on the data. We also consider electromagnetic and gravitational perturbations for which we obtain decay rates t −4, and t −6, respectively. We proceed by decomposition into angular momentum ℓ and summation of the decay estimates on the Regge-Wheeler equation for fixed . We encounter a dichotomy: the decay law in time is entirely determined by the asymptotic behavior of the Regge-Wheeler potential in the far field, whereas the growth of the constants in is dictated by the behavior of the Regge-Wheeler potential in a small neighborhood around its maximum. In other words, the tails are controlled by small energies, whereas the number of angular derivatives needed on the data is determined by energies close to the top of the Regge-Wheeler potential. This dichotomy corresponds to the well-known principle that for initial times the decay reflects the presence of complex resonances generated by the potential maximum, whereas for later times the tails are determined by the far field. However, we do not invoke complex resonances at all, but rely instead on semiclassical Sigal-Soffer type propagation estimates based on a Mourre bound near the top energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Reprint of the 1972 edition. New York: Dover Publications, Inc., 1992

  2. Alexandrova I., Bony J., Ramond T.: Resolvent and scattering matrix at the maximum of the potential. Serdica Math. J 34(1), 267–310 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress in Mathematics, 135. Basel: Birkhäuser Verlag, 1996

  4. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Preprint http://arXiv.org/abs/0908.2265v2 [math.AP], 2009

  5. Balogh C.B.: Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math 15, 1315–1323 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bony, J.-F., Fujiié, S., Ramond, T., Zerzeri, M.: Microlocal solutions of Schrödinger equations at a maximum point of the potential, Preprint 2009

  7. Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric. Commun. Math.Phys. 282(3), 697–719 (2008)

    Article  MATH  ADS  Google Scholar 

  8. Briet P., Combes J.-M., Duclos P.: On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances. Comm. Par. Diff. Eqs 12(2), 201–222 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Costin, O., Donninger, R., Schlag, W., Tanveer, S.: Semiclassical low energy scattering for one-dimensional Schrödinger operators with exponentially decaying potentials. To appear in Annales Henri Poincaré. http://arXiv.org/abs/1105.4221v1 [math.SP], 2011

  10. Costin O., Schlag W., Staubach W., Tanveer S.: Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. J. Funct. Anal. 255(9), 2321–2362 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Preprint 2008, http://arXiv.org/abs/0811.0354v1 [gr-qc], 2008

  12. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math 185, 467–559 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases |a| < < M or axisymmetry. Preprint http://arXiv.org/abs/1010.5132v1 [gr-qc], 2010

  15. Davies E.B.: Spectral Theory and Differential Operators. Cambridge Univ. Press, Cambridge (1995)

    Book  Google Scholar 

  16. Donninger R., Schlag W.: Decay estimates for the one-dimensional wave equation with an inverse power potential. Int. Math. Res. Not. 2010(22), 4276–4300 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Donninger R., Schlag W., Soffer A.: A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math. 226(1), 484–540 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys 264(2), 465–503 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gérard C., Grigis A.: Precise estimates of tunneling and eigenvalues near a potential barrier. J. Diff. Eqs 72(1), 149–177 (1988)

    Article  MATH  Google Scholar 

  20. Graf G.: The Mourre estimate in the semiclassical limit. Lett. Math. Phys. 20(1), 47–54 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Gustafson S., Sigal I.M.: Mathematical concepts of quantum mechanics. Springer-Verlag, Universitext Berlin (2003)

    Book  MATH  Google Scholar 

  22. Hawking S., Ellis G.: The large scale structure of space-time Cambridge Monographs on Mathematical Physics No 1. Cambridge University Press, London-New York (1973)

    Google Scholar 

  23. Helffer, B., Sjöstrand, J.: Semiclassical analysis of Harper’s equation III. Bull. Soc. Math. France, Memoire 39, 1990

  24. Hislop P., Nakamura S.: Semiclassical resolvent estimates. Ann.Inst. H. Poincaré Phys. Théor 51(2), 187–198 (1989)

    MATH  MathSciNet  Google Scholar 

  25. Hunziker W., Sigal I.M.: Time-dependent scattering theory of N-body quantum systems. Rev. Math. Phys. 12(8), 1033–1084 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hunziker W., Sigal I.M., Soffer A.: Minimal escape velocities. Comm. Par. Diff. Eqs 24(11–12), 2279–2295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ivrii V.Ja., Sigal I.M.: Asymptotics of the ground state energies of large Coulomb systems. Ann. of Math 138(2), 243–335 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kay B., Wald R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Class. Quan. Grav 4(4), 893–898 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys 293(1), 37–83 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s Law on Nonstationary Spacetimes. Preprint http://arXiv.org/abs/1104.5437v2 [math.AP], 2011

  31. Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Luk, J.: A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole. Preprint, http://arXiv.org/abs/1009.0671v2 [gr-qc], 2011

  33. Miller, P.D.: Applied asymptotic analysis. Graduate Studies in Mathematics, 75. Providence, RI: Amer. Math. Soc., 2006

  34. Nakamura S.: Semiclassical resolvent estimates for the barrier top energy. Commun. Par. Diff. Eq. 16(4/5), 873–883 (1991)

    Article  MATH  Google Scholar 

  35. Olver, F.W.J.: Asymptotics and Special Functions, Wellesley, MA: A K Peters, Ltd. 1997

  36. Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391–408 (1980/81)

    Article  ADS  MathSciNet  Google Scholar 

  37. Price R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5(3), 2419–2438 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  38. Price R.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields. Phys. Rev. D 5(3), 2439–2454 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ramond T.: Semiclassical study of quantum scattering on the line. Commun. Math. Phys. 177(1), 221–254 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I. Trans. Amer. Math. Soc. 362(1), 19–52 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schlag W., Soffer A., Staubach W.: Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II. Trans. Amer. Math. Soc. 362(1), 289–318 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sigal I.M., Soffer A.: Long-range many-body scattering. Invent. Math 99, 115–143 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Sigal, I.M., Soffer, A.: Local decay and velocity bounds. Preprint, Princeton University, 1988

  44. Sjöstrand, J.: Semiclassical Resonances Generated by Nondegenerate Critical Points. In: Pseudodifferential Operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin: Springer-Verlag, 1987, pp. 402–429

  45. Skibsted E.: Propagation estimates for N-body Schroedinger operators. Commun. Math. Phys 142(1), 67–98 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times, Preprint 2009, http://arXiv.org/abs/0910.5290v2 [math.AP], 2010

  47. Tataru D., Tohaneanu M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011(2), 248–292 (2011)

    MATH  MathSciNet  Google Scholar 

  48. Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Preprint http://arXiv.org/abs/0910.1545v1 [math.AP], 2009

  49. Wald R.: General relativity. University of Chicago Press, Chicago, IL (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Schlag.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donninger, R., Schlag, W. & Soffer, A. On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background. Commun. Math. Phys. 309, 51–86 (2012). https://doi.org/10.1007/s00220-011-1393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1393-8

Keywords

Navigation