Skip to main content
Log in

Alternative DNA amplification methods to PCR and their application in GMO detection: a review

  • Review article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Nucleic acids, especially DNA, are targets of qualitative and quantitative diagnostics for genetically modified organisms (GMO) in seeds, food- and feedstuff. The amplification of the nucleic acid is an essential step for further analyses of the target sequence. The PCR has been the method of choice for DNA amplification in most laboratories, and its real-time version (qPCR) also enables quantitative analysis of target contents. Despite its numerous advantages, PCR technology has some limitations such as the lack of true multiplexing properties. To alleviate the drawbacks linked to PCR technology, alternative nucleic acid amplification methods with promising characteristics are being developed fast. These methods, their advantages, and the inconveniences, which are not yet resolved are summarized in the paper. Special focus is given to the possibilities of using these alternative methods for GMO detection in future, when expansion of GMOs both in diversity and frequencies will make current GMO detection systems difficult to operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. James C (2006) Global status of commercialized biotech GM crops 2006. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca

    Google Scholar 

  2. Holst-Jensen A (2007) In: Pico Y (ed) Food toxicants analysis. Techniques, strategies and developments. Elsevier, Amsterdam, pp 231–268

    Google Scholar 

  3. Hernandez M, Rodriguez-Lazaro D, Ferrando A (2005) Curr Anal Chem 1:203–221

    Article  CAS  Google Scholar 

  4. Holst-Jensen A, Ronning SB, Lovseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  5. Bordoni R, Germini A, Mezzelani A, Marchelli R, De Bellis G (2005) J Agric Food Chem 53:912–918

    Article  CAS  Google Scholar 

  6. Leimanis S, Hernandez M, Fernandez S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomenech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139

    Article  CAS  Google Scholar 

  7. Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–77

    Article  CAS  Google Scholar 

  8. Lipp M, Shillito R, Giroux R, Spiegelhalter F, Charlton S, Pinero D, Song P (2005) J AOAC Int 88:136–155

    CAS  Google Scholar 

  9. Bordoni R, Mezzelani A, Consolandi C, Frosini A, Rizzi E, Castiglioni B, Salati C, Marmiroli N, Marchelli R, Bernardi LR, Battaglia C, De Bellis G (2004) J Agric Food Chem 52:1049–1054

    Article  CAS  Google Scholar 

  10. Fukuta S, Mizukami Y, Ishida A, Ueda J, Hasegawa M, Hayashi I, Hashimoto M, Kanbe M (2004) Eur Food Res Technol 218:496–500

    Article  CAS  Google Scholar 

  11. Lindenmeyer J, Hemmer W, Auberson L, Schrott M, Wurz A, Foth M, Ruggeberg H, Singer P, Broll H (1999) Final report: development of methods to identify foods produced by means of genetic engineering. European Commission, Luxembourg

  12. Peano C, Bordoni R, Gulli M, Mezzelani A, Samson MC, Bellis GD, Marmiroli N (2005) Anal Biochem 346:90–100

    Article  CAS  Google Scholar 

  13. Csako G (2006) Clin Chim Acta 363:6–31

    Article  CAS  Google Scholar 

  14. Andras SC, Power JB, Cocking EC, Davey MR (2001) Mol Biotechnol 19:29–44

    Article  CAS  Google Scholar 

  15. Schweitzer B, Kingsmore SF (2001) Curr Opin Biotechnol 12:21–27

    Article  CAS  Google Scholar 

  16. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Nucleic Acids Res 28:E63–E69

    Article  CAS  Google Scholar 

  17. Nagamine K, Kuzuhara Y, Notomi T (2002) Biochem Biophys Res Commun 290:1195–1198

    Article  CAS  Google Scholar 

  18. Seki M, Yamashita Y, Torigoe H, Tsuda H, Sato S, Maeno M (2005) J Clin Microbiol 43:1581–1586

    Article  CAS  Google Scholar 

  19. Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T (2001) Clin Chem 47:1742–1743

    CAS  Google Scholar 

  20. Enomoto Y, Yoshikawa T, Ihira M, Akimoto S, Miyake F, Usui C, Suga S, Suzuki K, Kawana T, Nishiyama Y, Asano Y (2005) J Clin Microbiol 43:951–955

    Article  CAS  Google Scholar 

  21. Mori Y, Kitao M, Tomita N, Notomi T (2004) J Biochem Biophys Methods 59:145–157

    Article  CAS  Google Scholar 

  22. Demidov VV (2002) Trends Biotechnol 20:189–190

    Article  CAS  Google Scholar 

  23. Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Clin Microbiol Rev 18:583–607

    Article  CAS  Google Scholar 

  24. Fukuda S, Takao S, Kuwayama M, Shimazu Y, Miyazaki K (2006) J Clin Microbiol 44:1376–1381

    Article  CAS  Google Scholar 

  25. Suzuki R, Yoshikawa T, Ihira M, Enomoto Y, Inagaki S, Matsumoto K, Kato K, Kudo K, Kojima S, Asano Y (2006) J Virol Methods 132:216–221

    Article  CAS  Google Scholar 

  26. Barany F (1991) Proc Natl Acad Sci USA 88:189–193

    Article  CAS  Google Scholar 

  27. Gerry NP, Witowski NE, Day JP, Hammer RP, Barany G, Barany F (1999) J Mol Biol 292:251–262

    Article  CAS  Google Scholar 

  28. Cao W (2004) Trends Biotechnol 22:38–44

    Article  CAS  Google Scholar 

  29. Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP (2000) Cytometry 39:131–140

    Article  CAS  Google Scholar 

  30. Monis PT, Andrews RH, Saint CP (2002) Int J Parasitol 32:551–562

    Article  CAS  Google Scholar 

  31. Cao W (2001) Clin Appl Immunol Rev 2:33–43

    Article  CAS  Google Scholar 

  32. Wabuyele MB, Farquar H, Stryjewski W, Hammer RP, Soper SA, Cheng YW, Barany F (2003) J Am Chem Soc 125:6937–6945

    Article  CAS  Google Scholar 

  33. Mike MG (2004) Hum Mutat 23:406–412

    Article  CAS  Google Scholar 

  34. Rickert AM, Borodina TA, Kuhn EJ, Lehrach H, Sperling S (2004) Anal Biochem 330:288–297

    Article  CAS  Google Scholar 

  35. Borodina TA, Lehrach H, Soldatov AV (2004) Anal Biochem 333:309–319

    Article  CAS  Google Scholar 

  36. Busti E, Bordoni R, Castiglioni B, Monciardini P, Sosio M, Donadio S, Consolandi C, Rossi BL, Battaglia C, De Bellis G (2002) BMC Microbiol 2:27–38

    Article  Google Scholar 

  37. Consolandi C, Busti E, Pera C, Delfino L, Ferrara GB, Bordoni R, Castiglioni B, Bernardi LR, Battaglia C, De Bellis G (2003) Hum Immunol 64:168–178

    Article  CAS  Google Scholar 

  38. Bordoni R, Castiglioni B, Mezzelani A, Rizzi E, Frosini A, Consolandi C, Rossi BL, Battaglia C, De Bellis G (2003) Clin Chem 49:1537–1540

    Article  CAS  Google Scholar 

  39. Favis R, Day JP, Gerry NP, Phelan C, Narod S, Barany F (2000) Nat Biotechnol 18:561–564

    Article  CAS  Google Scholar 

  40. Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse HMA, Malek L, Sooknanan R, Lens P (1991) J Virol Methods 35:273–286

    Article  CAS  Google Scholar 

  41. Deiman B, van Aarle P, Sillekens P (2002) Mol Biotechnol 20:163–179

    Article  CAS  Google Scholar 

  42. Yates S, Penning M, Goudsmit J, Frantzen I, van de Weijer B, van Strijp D, van Gemen B (2001) J Clin Microbiol 39:3656–3665

    Article  CAS  Google Scholar 

  43. Gulliksen A, Solli LA, Drese KS, Sorensen O, Karlsen F, Rogne H, Hovig E, Sirevag R (2005) Lab Chip 5:416–420

    Article  CAS  Google Scholar 

  44. Berard C, Cazalis MA, Leissner P, Mougin B (2004) Biotechniques 37:680–686

    CAS  Google Scholar 

  45. Timmermans EC, Tebas P, Ruiter JP, Wanders RJ, de Ronde A, de Baar MP (2006) Clin Chem 52:979–987

    Article  CAS  Google Scholar 

  46. Monis PT, Giglio S (2006) Infect Genet Evol 6:2–12

    Article  CAS  Google Scholar 

  47. Cook N (2003) J Microbiol Methods 53:165–174

    Article  CAS  Google Scholar 

  48. Hemmer W (1997) Foods derived from genetically modified organisms and detection methods. Center BATS, Basel

    Google Scholar 

  49. Kok EJ, Aarts HJM, Van Hoef AM, Kuiper HA (2002) J AOAC Int 85:797–800

    CAS  Google Scholar 

  50. de Baar MP, Timmermans EC, Bakker M, de Rooij E, van Gemen B, Goudsmit J (2001) J Clin Microbiol 39:1895–1902

    Article  Google Scholar 

  51. Hu L, Wang J, Baggerly K, Wang H, Fuller G, Hamilton SR, Coombes KR, Zhang W (2002) BMC Genomics 3:16–23

    Article  Google Scholar 

  52. Rachman H, Lee JS, Angermann J, Kowall J, Kaufmann SH (2006) J Biotechnol 126:61–68

    Article  CAS  Google Scholar 

  53. Wang J, Hu L, Hamilton SR, Coombes KR, Zhang W (2003) Biotechniques 34:394–400

    Google Scholar 

  54. Zhao H, Hastie T, Whitfield M, Borresen-Dale AL, Jeffrey S (2002) BMC Genomics 3:31–45

    Article  CAS  Google Scholar 

  55. Zhu B, Xu F, Baba Y (2006) Mol Genet Metab 87:71–79

    Article  CAS  Google Scholar 

  56. Hawkins TL, Detter JC, Richardson PM (2002) Curr Opin Biotechnol 13:65–67

    Article  CAS  Google Scholar 

  57. Hughes S, Arneson N, Done S, Squire J (2005) Prog Biophys Mol Biol 88:173–189

    Article  CAS  Google Scholar 

  58. Lasken RS, Egholm M (2003) Trends Biotechnol 21:531–535

    Article  CAS  Google Scholar 

  59. Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS (2003) Genome Res 13:954–964

    Article  CAS  Google Scholar 

  60. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Proc Natl Acad Sci USA 99:5261–5266

    Article  CAS  Google Scholar 

  61. Tengs T, Kristoffersen AB, Berdal KG, Thorstensen T, Butenko MA, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 7:91

    Article  CAS  Google Scholar 

  62. Zhang D, Wu J, Ye F, Feng T, Lee I, Yin BJ (2006) Clin Chim Acta 363:61–70

    Article  CAS  Google Scholar 

  63. Zhang DY, Zhang WD, Li XP, Konomi Y (2001) Gene 274:209–216

    Article  CAS  Google Scholar 

  64. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Nat Genet 19:225–232

    Article  CAS  Google Scholar 

  65. Zhang DY, Brandwein M, Hsuih T, Li HB (2001) Mol Diagn 6:141–150

    Article  CAS  Google Scholar 

  66. Haible D, Kober S, Jeske H (2006) J Virol Methods 135:9–16

    Article  CAS  Google Scholar 

  67. Millard PJ, Bickerstaff LE, LaPatra SE, Kim CH (2006) J Fish Dis 29:201–213

    Article  CAS  Google Scholar 

  68. Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M (2005) Appl Environ Microbiol 71:7933–7940

    Article  CAS  Google Scholar 

  69. Demidov VV (2002) Expert Rev Mol Diagn 2:542–548

    Article  CAS  Google Scholar 

  70. Rudi K, Rud I, Holck A (2003) Nucleic Acids Res 31:e62–e69

    Article  CAS  Google Scholar 

  71. De Loose M, Bertheau Y, Harris N, Didierjean L, Prat S, Holck A, Freyer R, Holst-Jensen A (2003) Reliable, standardised, specific, quantitative detection of genetically modified food. Final report of workpackage 4: “development and testing of transformation-event specific primer-probe sets”. European Commission, Luxembourg, Luxembourg

  72. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Nucleic Acids Res 30:e57–e69

    Article  Google Scholar 

  73. Rachlin J, Ding C, Cantor C, Kasif S (2005) BMC Genomics 6:102–112

    Article  CAS  Google Scholar 

  74. Aarts HJM, Rie JPPF, Kok EJ (2002) Expert Rev Mol Diagn 2:69–77

    Article  CAS  Google Scholar 

  75. Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Proc Natl Acad Sci USA 96:8768–8773

    Article  CAS  Google Scholar 

  76. Gruden K (2006) In: Freitag J (ed) Plant genomics and bioinformatics expression micro arrays and beyond—a course book. Potsdam-Golm, pp 36–45

Download references

Acknowledgments

The authors thank Dr Mike Galsworthy for critical review of the manuscript. This study was supported by the Slovenian Ministry of Higher Education, Science and Technology (P4-0165) and the European Commission’s Sixth Framework Program through the integrated project Co-extra (contract no. 7158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dany Morisset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morisset, D., Stebih, D., Cankar, K. et al. Alternative DNA amplification methods to PCR and their application in GMO detection: a review. Eur Food Res Technol 227, 1287–1297 (2008). https://doi.org/10.1007/s00217-008-0850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0850-x

Keywords

Navigation