Skip to main content
Log in

Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to trace selected nucleic acid and protein components of isogene versus Bt transgene maize within the bovine gastrointestinal tract (GIT). After feeding 22 cattle for 4 weeks with Bt176 maize, different plant genes and the recombinant protein CryIAb were quantified during digestion. Furthermore, a first initial characterization of rumen bacteria was approached, using 16rDNA gene sequencing comparing isogene- against transgene-fed animals. Ingesta samples of different GIT sections (rumen, abomasum, jejunum, colon) were analysed for chloroplast, maize invertase, zein and Bt toxin (CryIAb) gene fragments using quantitative real-time PCR. First, the initial gene dose of these maize genes was detected in maize silage. During digestion, a significant reduction of high-to-medium abundant plant gene fragments was shown depending on the dwell-time and the initial gene copy number. Immunoreactive CryIAb protein was quantified by ELISA in intestinal samples indicating a significant loss of that protein. Remarkable amounts of Bt toxin were found in all contents of the GIT and the protein was still present in faeces. For the first time, the influence of CryIAb transgene maize on rumen bacterial microflora was investigated compared to isogene material through analysis of 497 individual bacterial 16S rDNA sequences. In principle, specific bacterial leader-species could be identified in all bovine rumen extracts, but no significant influence of Bt176 maize feed was found on the composition of the microbial population. This investigation provides supplementing data to further evaluate the fate of novel recombinant material originating from transgene feed or food within the mammalian GIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Duijn GJ, van Biert R, Bleeker-Marcelis H, van Boeijen I, Ada AJ, Jhakrie S, Hessing M (2002) JAOAC Int 85:787–791

    Google Scholar 

  2. Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwägele F, Jahreis G, Flachowsky G (2001) Eur Food Res Technol 212:129–134

    CAS  Google Scholar 

  3. Klotz A, Mayer J, Einspanier R (2002) Eur Food Res Technol 214:271–275

    Article  CAS  Google Scholar 

  4. Doerfler W, Schubbert R (1998) Wien Klin Wochenschr 110:40–44

    CAS  PubMed  Google Scholar 

  5. Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Proc Natl Acad Sci USA 94:961–966

    CAS  PubMed  Google Scholar 

  6. Doerfler W, Schubbert R, Heller H, Kämmer C, Hilger-Eversheim K, Knoblauch M, Remus R (1997) Tibtech 15:297–301

    Article  CAS  Google Scholar 

  7. Doerfler W (2000) Foreign DNA in mammalian systems. Wiley-VCH, Weinheim, New York

  8. Anklam E, Gadani F, Heinze P, Pijnenburg H, Van Den Eede G (2002) Eur Food Res Technol 214:3–26

    Article  CAS  Google Scholar 

  9. Vaitilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266

    PubMed  Google Scholar 

  10. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    PubMed  Google Scholar 

  11. Klaften M, WhetsellA, WebsterJ, GrewalR, Fedyk E, Einspanier R, Jennings J, Lirette R, Glenn K (2004) Development of PCR methods to detect plant DNA in animal tissue. In: Bhalgat MM, Ridley W P, Felsot A S, Seiber J N (eds) Agricultural biotechnology: challenges and prospects. ACS Symposium Series 866, American Chemical Society ,Washington D.C., pp 83–99

  12. Bendich AJ (1987) BioEssays 6:279–282

    CAS  PubMed  Google Scholar 

  13. Hupfer C, Meyer J, Hotzel H, Sachse K, Engel K-H (1999) Eur Food Res Technol 209:301–304

    Article  CAS  Google Scholar 

  14. Chiter A, Forbes M, Blair GE (2000) FEBS Lett 481:164–168

    Article  CAS  PubMed  Google Scholar 

  15. Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G (2002) Livestock Prod Sci 74:223–238

    Article  Google Scholar 

  16. Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y (2003) Vet Hum Toxicol 45:72–75

    CAS  PubMed  Google Scholar 

  17. Ehlers B, Strauch E, Goltz M, Kubsch D, Wagner H, Maidhof H, Bendiek J, Appel B, Buhk H-J (1997) Bundesgesundheitsblatt 40:118–121

    Google Scholar 

  18. Studer E, Dahinden I, Lüthy J, Hübner P (1997) Mitt Geb Lebensmittelunters Hyg 88:515–524

    CAS  Google Scholar 

  19. Hupfer C, Hotzel H, Sachse K, Engel K-H (1998) Z Lebensm Unters Forsch A 206:203–207

    Article  CAS  Google Scholar 

  20. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002), Appl Environ Microbiol 68:5064–81

    Google Scholar 

Download references

Acknowledgement

This study was supported by the BMBF project 01K0-31P2614. The authors gratefully acknowledge the skilful assistance and help of Stefanie Schiebe, Tamara Steltzl, Inge Celler (Freising), Rutzmoser and Steinberger (Grub).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Einspanier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einspanier, R., Lutz, B., Rief, S. et al. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur Food Res Technol 218, 269–273 (2004). https://doi.org/10.1007/s00217-003-0842-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0842-9

Keywords

Navigation