Skip to main content
Log in

A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer’s spent grains (BSG). A 24 orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31 ± 0.04% (w/w), which was fivefold higher than that obtained with conventional solid–liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DAD-MS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds.

Response surface of FA yield (Y, %, w/w) as a function of extraction time (X 1) and the other variables studied: a solvent volume (X 3); b temperature (X 2)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fillaudeau L, Blanpain-Avet P, Daufin G (2006) J Clean Prod 14(5):463–471

    Article  Google Scholar 

  2. Mussatto SI (2009) Biotechnological Potential of Brewing Industry By-Products. In: Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, pp 313–326

    Chapter  Google Scholar 

  3. Mussatto SI, Dragone G, Roberto IC (2007) Ind Crop Prod 25(2):231–237

    Article  CAS  Google Scholar 

  4. Aliyu S, Bala M (2011) Afr J Biotechnol 10(3):324–331

    CAS  Google Scholar 

  5. Naczk M, Shahidi F (2004) J Chromatogr 1054(1–2):95–111

    CAS  Google Scholar 

  6. Ou S, Kwok K-C (2004) J Sci Food Agric 84(11):1261–1269

    Article  CAS  Google Scholar 

  7. Shahidi F, Chandrasekara A (2010) Phytochem Rev 9(1):147–170

    Article  CAS  Google Scholar 

  8. Kroon PA, Williamson G (1999) J Sci Food Agric 79(3):355–361

    Article  CAS  Google Scholar 

  9. Bartolomé B, Gómez-Cordovés C (1999) J Sci Food Agric 79(3):435–439

    Article  Google Scholar 

  10. Bartolomé B, Santos M, Jiménez JJ, del Nozal MJ, Gómez-Cordovés C (2002) J Cereal Sci 36(1):51–58

    Article  Google Scholar 

  11. Dvorakova M, Moreira MM, Dostalek P, Skulilova Z, Guido LF, Barros AA (2008) J Chromatogr 1189(1–2):398–405

    Article  CAS  Google Scholar 

  12. Kalia K, Sharma K, Singh HP, Singh B (2008) J Agric Food Chem 56(21):10129–10134

    Article  CAS  Google Scholar 

  13. Szwajgier D, Waśko A, Targoński Z, Niedźwiadek M, Bancarzewska M (2010) J Inst Brew 116(3):293–303

    CAS  Google Scholar 

  14. Sousa AMM, Alves VD, Morais S, Delerue-Matos C, Gonçalves MP (2010) Bioresour Technol 101(9):3258–3267

    Article  CAS  Google Scholar 

  15. Sun Y, Liao X, Wang Z, Hu X, Chen F (2007) Eur Food Res Technol 225(3):511–523

    Article  CAS  Google Scholar 

  16. Bélanger J, Paré J (2006) Anal Bioanal Chem 386(4):1049–1058

    Article  Google Scholar 

  17. Sparr Eskilsson C, Björklund E (2000) J Chromatogr 902(1):227–250

    Article  CAS  Google Scholar 

  18. Bai X-L, Yue T-L, Yuan Y-H, Zhang H-W (2010) J Sep Sci 33(23–24):3751–3758

    Article  CAS  Google Scholar 

  19. Pan X, Niu G, Liu H (2003) Chem Eng Process 42(2):129–133

    Article  CAS  Google Scholar 

  20. Zhang L, Wang Y, Wu D, Xu M, Chen J (2011) Molecules 16(6):4428–4437

    Article  CAS  Google Scholar 

  21. Hong N, Yaylayan VA, Raghavan GSV, Paré JRJ, Bélanger JMR (2001) Nat Prod Lett 15(3):197–204

    Article  CAS  Google Scholar 

  22. Liazid A, Palma M, Brigui J, Barroso CG (2007) J Chromatogr 1140:29–34

    Article  CAS  Google Scholar 

  23. Oufnac DS, Xu Z, Sun T, Sabliov C, Prinyawiwatkul W, Godber JS (2007) Cereal Chem 84(2):125–129

    Article  CAS  Google Scholar 

  24. Inglett GE, Rose DJ, Stevenson DC, Chen D, Biswas A (2009) Cereal Chem 86(6):661–664

    Article  CAS  Google Scholar 

  25. Athanasios M, Georgios L, Michael K (2007) Food Chem 102(3):606–611

    Article  CAS  Google Scholar 

  26. Montgomery DC (1991) Design and analysis of experiments

  27. Garg UK, Kaur MP, Garg VK, Sud D (2008) Bioresour Technol 99(5):1325–1331

    Article  CAS  Google Scholar 

  28. Masmoudi M, Besbes S, Chaabouni M, Robert C, Paquot M, Blecker C, Attia H (2008) Carbohydr Polym 74(2):185–192

    Article  CAS  Google Scholar 

  29. Mussatto SI, Roberto IC (2005) J Sci Food Agric 85(14):2453–2460

    Article  CAS  Google Scholar 

  30. Rubilar M, Pinelo M, Shene C, Sineiro J, Nuñez MJ (2007) J Agric Food Chem 55(25):10101–10109

    Article  CAS  Google Scholar 

  31. Hernanz D, Nuñez V, Sancho AI, Faulds CB, Williamson G, Bartolomé B, Gómez-Cordovés C (2001) J Agric Food Chem 49(10):4884–4888

    Article  CAS  Google Scholar 

  32. Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F (2001) J Chromatogr 933(1–2):37–43

    Article  CAS  Google Scholar 

  33. Khan MK, Abert-Vian M, Fabiano-Tixier A-S, Dangles O, Chemat F (2010) Food Chem 119(2):851–858

    Article  CAS  Google Scholar 

  34. Louli V, Ragoussis N, Magoulas K (2004) Bioresour Technol 92(2):201–208

    Article  CAS  Google Scholar 

  35. Dobberstein D, Bunzel M (2010) J Agric Food Chem 58(16):8927–8935

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT) through grant no. PEst-C/EQB/LA0006/2011. M.M.M. wishes to acknowledge FCT for her PhD studentship (SFRH/BD/60577/2009). The authors also thank UNICER – Bebidas de Portugal for their support, including the supply of brewer’s spent grain samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís F. Guido.

Additional information

Published in the special issue Euroanalysis XVI (The European Conference on Analytical Chemistry) with guest editor Slavica Ražić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, M.M., Morais, S., Barros, A.A. et al. A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Anal Bioanal Chem 403, 1019–1029 (2012). https://doi.org/10.1007/s00216-011-5703-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5703-y

Keywords

Navigation