Skip to main content
Log in

Characterization of non-stoichiometric co-sputtered Ba0.6Sr0.4(Ti1 − x Fe x )1 + x O3 − δ thin films for tunable passive microwave applications

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The fabrication of novel iron-doped barium strontium titanate thin films by means of radio frequency (RF) magnetron co-sputtering is shown. Investigations of the elemental composition and the dopant distribution in the thin films obtained by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and time-of-flight secondary ion mass spectroscopy reveal a homogeneous dopant concentration throughout the thin film. The incorporation of the iron dopant and the temperature-dependent evolution of the crystal structure and morphology are analyzed by electron paramagnetic resonance spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and scanning electron microscopy. In summary, these results emphasize the RF magnetron co-sputter process as a versatile way to fabricate doped thin films.

Cross section of the RF magnetron co-sputter setup and the X-ray phototelectron spectroscopy iron spectrum of a co-sputtered iron doped Barium strontium titanate thin film

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kozyrev A et al (1998) Microw. Symp. Dig.:985

  2. Tombak A et al (2003) IEEE Trans Microw Theor Tech 51(2):462

    Article  Google Scholar 

  3. Scheele P et al (2005) Micro Symp Dig: 6500

  4. Horikawa T et al (1994) IEEE Trans Electron E77-C:385

  5. Kim TS, Oh MH, Kim CH (1995) Thin Solid Films 254:273

    Article  CAS  Google Scholar 

  6. Qadri SB et al (1995) Appl Phys Lett 66:1605

    Article  CAS  Google Scholar 

  7. Tahan DM, Safari A, Klein LC (1996) J Am Ceram Soc 79:1593

    Article  CAS  Google Scholar 

  8. Gao Y, Tran T, Alluri P (1999) Appl Phys Lett 75:415

    Article  CAS  Google Scholar 

  9. Lee SY, Tseng TY (2003) Appl Phys Lett 80:1797

    Article  Google Scholar 

  10. Chen SY, Wang HW, Huang LC (2001) Jpn J Appl Phys 40:4974

    Article  CAS  Google Scholar 

  11. Saha S, Krupanidhi SB (2001) J Appl Phys 90:1250

    Article  CAS  Google Scholar 

  12. Ahn KH, Baik S, Kim SS (2002) J Appl Phys 92:2651

    Article  CAS  Google Scholar 

  13. Saha S, Krupanidhi SB (2011) Appl Phys Lett 79:111

    Article  Google Scholar 

  14. Imai K, Takeno S, Nakamura K (2002) Jpn J Appl Phys 41:6060

    Article  CAS  Google Scholar 

  15. Giere A et al (2008) Frequenz 62:47

    Article  Google Scholar 

  16. Su B et al (2002) J Electrocer 9:111

    Article  CAS  Google Scholar 

  17. Lutz H, Bruns M, Link F, Baumann H (1998) Thin Solid Films 332:230

    Article  CAS  Google Scholar 

  18. Lutz H, Bruns M, Link F, Baumann H (1999) Surf Coat Tech 116–119:419

    Article  Google Scholar 

  19. Kormunda M, Pavlik J, Mackova A, Malinski P (2010) Surf Coat Tech 205:120

    Article  Google Scholar 

  20. Parry KL et al (2006) Surf Interface Anal 38:1497

    Article  CAS  Google Scholar 

  21. Scofield JH (1976) J Electron Spectr Relat Phen 8:129

    Article  CAS  Google Scholar 

  22. Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21:165

    Article  CAS  Google Scholar 

  23. Holländer B et al. (2000) Nucl Instr And Meth. In: Phys Res B 161–163:227

  24. Doolittle LR (1985) Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 9:344

    Article  Google Scholar 

  25. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota

    Google Scholar 

  26. Viviani M et al (1999) J Eur Ceram Soc 19:1047

    Article  CAS  Google Scholar 

  27. Miot C et al (1997) J Mater Res 12:2388

    Article  CAS  Google Scholar 

  28. Hewitt RW, Winograd N (1980) J Appl Phys 51:2620

    Article  CAS  Google Scholar 

  29. Fujisaki Y, Shimamoto Y, Matsui Y (1999) Jpn J Appl Phys Part 2 38: L52

  30. Li XL et al (2005) Appl Phys Lett 87:222905

    Article  Google Scholar 

  31. Craciun V, Singh RK (2000) Appl Phys Lett 76:1932

    Article  CAS  Google Scholar 

  32. Fukuda Y et al (1989) Phys Rev B 39:11494

    Article  CAS  Google Scholar 

  33. Meyer HM III et al (1989) Phys Rev B 38:6500

    Article  Google Scholar 

  34. Sosulnikov MI, Teterin YA (1992) J Elec Spec Phen 59:111

    Article  CAS  Google Scholar 

  35. Brundel CR, Chuang TJ, Wandelt K (1977) Surf Sci 68:459

    Article  Google Scholar 

  36. Eichel RA (2011) Phys Chem Chem Phys 13:368–384

    Article  CAS  Google Scholar 

  37. Drahus MD, Jakes P, Erdem E, Eichel RA (2011) Solid State Ionics 184:47–51

    Article  CAS  Google Scholar 

  38. Meštric H, Eichel RA, Kloss T et al (2005) Phys Rev B 71:134109

    Article  Google Scholar 

  39. Óvári L, Kiss J (2006) Appl Surf Sci 252:8624

    Article  Google Scholar 

  40. Schafranek R et al (2009) J Eur Ceram Soc 29:1433

    Article  CAS  Google Scholar 

  41. Yuzyuk YI, Alyoshin VA, Zakharachenko IN (2002) Phys Rev B 65:134107

    Article  Google Scholar 

  42. Kuo SY, Liao WY, Hsieh WF (2001) Phys Rev B 64:224103

    Article  Google Scholar 

  43. Cao LZ et al (2006) J Phys D 39:2819

    Article  CAS  Google Scholar 

  44. Mandelbrot B (1982) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  45. Tay ST et al (2000) J Appl Phys 88:5928

    Article  CAS  Google Scholar 

  46. Fang TH et al (2006) Mat Sci Eng A426:157

    CAS  Google Scholar 

  47. Venkata Saravanan K, Ghanashyam Krishna M, James Raju KC (2009) J Appl Phys 106:114102

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Mrs. V. Hermann and Mr. U. Geckle, KIT, for the assistance during the experimental work and like to thank Dr. H. H. Belz, ThermoFisher Scientific GmbH, Dreieich, Germany, for the Raman measurements, as well as Dr. Peter Jakes for experimental support and many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stemme.

Additional information

Published in the special paper collection on Solid State Analysis (FKA 16) with guest editor G. Friedbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemme, F., Geßwein, H., Drahus, M.D. et al. Characterization of non-stoichiometric co-sputtered Ba0.6Sr0.4(Ti1 − x Fe x )1 + x O3 − δ thin films for tunable passive microwave applications. Anal Bioanal Chem 403, 643–650 (2012). https://doi.org/10.1007/s00216-011-5435-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5435-z

Keywords

Navigation