Skip to main content
Log in

Investigation of the partially coherent effects in a 2D Talbot interferometer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The recent use of a one-dimensional (1D) X-ray Talbot interferometer has triggered great interest in X-ray differential phase contrast imaging. As an improved version of a 1D interferometer, the development of two-dimensional (2D) grating interferometry strongly stimulated applications of grating-based imaging. In the framework of Fresnel diffraction theory, we investigated the self-image of 2D-phase gratings under partially coherent illumination. The fringe visibility of the self-image has been analyzed as a function of the spatial coherence length. From the viewpoint of self-image visibility, it is possible to find the optimal 2D grid for 2D X-ray grating interferometer imaging. Numerical simulations have been also carried out for quantitative evaluation. Results, in good agreement with theoretical analysis, indicate the spatial coherence requirements of the radiation illuminating a 2D grating interferometer. Moreover, our results can be used to optimize performances of a 2D grating interferometer and for further theoretical and experimental research on grating-based imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weitkamp T, Diaz A, David C et al (2005) Opt Express 13(16):6296–6304

    Article  Google Scholar 

  2. Momose A (2005) Jpn J Appl Phys Part 1 44(9A):6355–6367

    Article  CAS  Google Scholar 

  3. Momose A (2003) Opt Express 11(19):2303–2314

    Article  Google Scholar 

  4. David C, Nohammer B, Solak HH et al (2002) Appl Phys Lett 81(17):3287–3289

    Article  CAS  Google Scholar 

  5. Momose A, Yashiro W, Maikusa H et al (2009) Opt Express 17(15):12540–12545

    Article  CAS  Google Scholar 

  6. Petibois C (2010) Anal Bioanal Chem 397(6):2051–2065

    Article  CAS  Google Scholar 

  7. Zhu P, Zhang K et al (2010) Proc Natl Acad Sci 107(31):13576–13581

    Article  CAS  Google Scholar 

  8. Pfeiffer F, Kottler C, Bunk O et al (2007) Phys Rev Lett 98(10):108105/108101–108105/108104

    Article  Google Scholar 

  9. Weitkamp T, David C, Kottler C et al (2006) Tomography with grating interferometers at low-brilliance sources. In: Bonse U (ed) Developments in X-ray tomography V. Proc. SPIE S3180–S3180

  10. Pfeiffer F, Weitkamp T, Bunk O et al (2006) Nat Phys 2(4):258–261

    Article  CAS  Google Scholar 

  11. Zanette I, David C, Rutishauser S et al (2010) 2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer. In: Denecke M, Walker C (eds) X-ray optics and microanalysis, Proceedings, 2010. American Institute of Physics, pp 73–79

  12. Zanette I, Weitkamp T, Donath T et al (2010) Phys Rev Lett 105(24):248102

    Article  Google Scholar 

  13. Ming J, Christopher Lee W, Ge W (2008) Int J Biomed Imaging 397(6):2137–2141

    Google Scholar 

  14. Yokozeki S, Suzuki T (1971) Appl Optics 10(7):1575–1580

    Article  CAS  Google Scholar 

  15. Lohmann A, Silva D (1971) Opt Commun 2(9):413–415

    Article  Google Scholar 

  16. Wang Z, Zhu P, Huang W et al (2010) Anal Bioanal Chem 397(6):2091–2094

    Article  CAS  Google Scholar 

  17. Reznikova E, Mohr J, Boerner M et al (2008) Microsyst Technol 14(9–11):1683–1688

    Article  CAS  Google Scholar 

  18. David C, Bruder J, Rohbeck T et al (2007) Microelectron Eng 84(5–8):1172–1177

    Article  CAS  Google Scholar 

  19. Weitkamp T, Zanette I, David C et al (2010) Recent developments in X-ray Talbot interferometry at ESRF-ID19. In: Stock SR (ed) Developments in X-ray tomography VII. Proc. SPIE, p 780406 (780410 pp)

  20. Weitkamp T, Tafforeau P, Boller E et al (2010) Status and evolution of the ESRF beamline ID19. In: Denecke M, Walker C (eds) X-ray optics and microanalysis. American Institute of Physics, pp 33–38

  21. Engelhardt M, Baumann J, Schuster M et al (2007) Appl Phys Lett 90(22):224101

    Article  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge Dr. Augusto Marcelli for fruitful discussions. This work was partly supported by the National Outstanding Youth Fund (Project No. 10125523 to ZW), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N42), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Natural Science Foundation of China (NSFC 10774144 and 10979055), and the National Basic Research Program of China (2009CB930804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Wu.

Additional information

Published in the special issue Imaging Techniques with Synchrotron Radiation with Guest Editor Cyril Petibois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Wang, Z., Gao, K. et al. Investigation of the partially coherent effects in a 2D Talbot interferometer. Anal Bioanal Chem 401, 865–870 (2011). https://doi.org/10.1007/s00216-011-5146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5146-5

Keywords

Navigation