Skip to main content
Log in

Imaging the cellular uptake of tiopronin-modified gold nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Well-dispersed gold nanoparticles (NP) coated with tiopronin were synthesized by X-ray irradiation without reducing agents. High-resolution transmission electron microscopy shows that the average core diameters of the NPs can be systematically controlled by adjusting the tiopronin to Au mole ratio in the reaction. Three methods were used to study the NP uptake by cells: quantitative measurements by inductively coupled plasma mass spectrometry, direct imaging with high lateral resolution transmission electron microscopy and transmission X-ray microscopy. The results confirmed that the NP internalization mostly occurred via endocytosis and concerned the cytoplasm. The particles, in spite of their small sizes, were not found to arrive inside the cell nuclei. The synthesis without reducing agents and solvents increased the biocompatibility as required for potential applications in analysis and biomedicine in general.

A high resolution Transmission X-ray microscope image (A) captured the internalization and aggregation of tiopronin-coated Au nanoparticles in the vicinity of cell nucleus, the light dark area, of an EMG-6 cell. (B) One of the corresponding pictures produced by three-dimensional tomography reconstruction. The complete movie sequence of such pictures provides three-dimensional visual confirmation of the internalization and location of tiopronin-coated Au nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2003) Chem Rev 104:293–346

    Article  Google Scholar 

  2. Dahl JA, Maddux BLS, Hutchison JE (2007) Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  3. Funston AM, Mulvaney P, Murray RW (2009) Langmuir 25:13840–13851

    Article  Google Scholar 

  4. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1995) Chem Commun 16:1655–1656

    Google Scholar 

  5. Brust M, Schiffrin DJ, Bethell D, Kiely CJ (1995) Adv Mater 7:795–797

    Article  CAS  Google Scholar 

  6. Brown LO, Hutchison JE (1997) J Am Chem Soc 119:12384–12385

    Article  CAS  Google Scholar 

  7. Chen S, Murray RW (1998) Langmuir 15:682–689

    Article  Google Scholar 

  8. Templeton AC, Chen S, Gross SM, Murray RW (1998) Langmuir 15:66–76

    Article  Google Scholar 

  9. Schaaff TG, Whetten RL (2000) J Phys Chem B 104:2630–2641

    Article  CAS  Google Scholar 

  10. Pasquato L, Pengo P, Scrimin P (2004) J Mater Chem 14:3481–3487

    Article  CAS  Google Scholar 

  11. Price RC, Whetten RL (2005) J Am Chem Soc 127:13750–13751

    Article  CAS  Google Scholar 

  12. Bertino MF, Sun ZM, Zhang R, Wang LS (2006) J Phys Chem B 110:21416–21418

    Article  CAS  Google Scholar 

  13. Jin R (2008) Agew Chem Int Ed 47:6750–6753

    Article  CAS  Google Scholar 

  14. Wu Z, Suhan J, Jin R (2009) J Mater Chem 19:622–626

    Article  CAS  Google Scholar 

  15. Zhu Y, Qian H, Zhu M, Jin R (2010) Adv Mater 22:1915–1920

    CAS  Google Scholar 

  16. Tang Z, Xu B, Wu B, Germann MW (2010) J Am Chem Soc 132:3367–3374

    Article  CAS  Google Scholar 

  17. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) J Am Chem Soc 130:3754–3755

    Article  CAS  Google Scholar 

  18. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433

    Article  CAS  Google Scholar 

  19. Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguci R, Okuda S, Yamamoto T (2008) J Nanopart Res 10:1071–1076

    Article  CAS  Google Scholar 

  20. Ma Q, Moldovan N, Mancini DC, Rosenberg RA (2000) Appl Phys Lett 76:2014–2016

    Article  CAS  Google Scholar 

  21. Karadas F, Ertas G, Ozkaraoglu E, Suzer S (2004) Langmuir 21:437–442

    Article  Google Scholar 

  22. Cai XQ, Wang CL, Chen HH, Chie CC, Lai SF, Chen YY, Hua TE, Kempson IM, Hwu Y, Yang CS, Margaritondo G (2010) Nanotechnology 21:335604

    Article  Google Scholar 

  23. Wang CH, Liu CR, Wang CL, Hua TE, Lee KH, Hwu YK (2008) J Phys D Appl Phys 41:195301–195308

    Article  Google Scholar 

  24. Wang CH, Hua TE, Chien CC, Yu YL, Yang TY, Liu CJ, Leng WH, Hwu YK, Yang YC, Kim CC, Je JH, Chen CH, Lin HM, Margaritondo G (2007) Mater Chem Phys 106:323–329

    Article  CAS  Google Scholar 

  25. Wang CL, Hso BJ, Lai SF, Chen WC, Chen HH, Chen YY, Chien CC, Cai XQ, Kempson IM, Hwu Y, Margaritondo G (2011) Nanotechnology 22:065605

    Article  Google Scholar 

  26. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Small 5:701–708

    Article  CAS  Google Scholar 

  27. Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  28. Chithrani BD, Chan WCW (2007) Nano Lett 7:1542–1550

    Article  CAS  Google Scholar 

  29. Nativo P, Prior IA, Brust M (2008) ACS Nano 2:1639–1644

    Article  CAS  Google Scholar 

  30. Chu YS, Yi JM, De Carlo F, Shen Q, Lee WK, Wu HJ, Wang CL, Wang JY, Liu CJ, Wang CH, Wu SR, Chien CC, Hwu YK, Tkachuk A, Yun W, Feser M, Liang KS, Je JH, Margaritondo G (2008) Appl Phys Lett 92:103119–103123

    Article  Google Scholar 

  31. Chen YT, Chen TY, Yi J, Chu YS, Lee WK, Wang CL, Kempson IM, Hwu Y, Gajdosik V, Margaritondo G (2011) Opt Lett 36:1269–1271

    Article  Google Scholar 

  32. Syme CD, Sirimuthu NM, Faley SL, Cooper JM (2010) Chem Commun 46:7921–7923

    Article  CAS  Google Scholar 

  33. Sirimuthu NMS, Syme CD, Cooper JM (2010) Anal Chem 82:7369–7373

    Article  CAS  Google Scholar 

  34. Le Gros MA, McDermott G, Larabell CA (2005) Curr Opin Struck Biol 15:593–600

    Article  Google Scholar 

  35. Larabell CA, Le Gros MA (2004) Mol Biol Cell 15:957–962

    Article  CAS  Google Scholar 

  36. Hsu PC, Wang CH, Yang TY, Hwu YK, Lin CS, Chen CH, Chang LW, Seol SK, Je JH, Margaritondo G (2007) J Vac Sci Technol A 25:615–620

    Article  CAS  Google Scholar 

  37. Kim YG, Oh SK, Crooks RM (2003) Chem Mater 16:167–172

    Article  Google Scholar 

  38. Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G (2010) Phys Med Biol 55:930–945

    Google Scholar 

  39. Aft RL, Lewis JS, Zhang F, Kim J, Welch MJ (2003) Cancer Res 63:5496–5504

    CAS  Google Scholar 

  40. Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, Hua TE, Chen YY, Wu MK, Hwu Y, Yang CS, Margaritondo G (2010) Phys Med Biol 55:469–482

    Article  CAS  Google Scholar 

  41. Chen HH, Chien CC, Petibois C, Wang CL, Chu YS, Lai SF, Hua TE, Chen YY, Cai XQ, Hwu Y, Margaritondo G (2011) J Nanobiotechnology 9(1):14

    Google Scholar 

  42. Wang CH, Liu CJ, Chien CC, Chen HT, Hua TE, Leng WH, Chen HH, Kempson IM, Hwu Y, Hsiao M, Lai TC, Wang JL, Yang CS, Lin HM, Chen YJ, Margaritondo G (2011) Mater Chem Phys 126:352–356

    Article  CAS  Google Scholar 

  43. Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Nano Lett 6:1261–1268

    Article  Google Scholar 

  44. Yen HJ, Hsu SH, Tsai CL (2009) Small 5:1553–1561

    Article  CAS  Google Scholar 

  45. Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2008) Biomacromolecules 9:3383–3388

    Article  CAS  Google Scholar 

  46. De La Fuente JM, Berry CC, Riehle MO, Curtis AS (2006) Langmuir 22:3286–3293

    Article  Google Scholar 

  47. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Traffic 4:222–231

    Article  CAS  Google Scholar 

  48. Pelkmans L, Burli T, Zerial M, Helenius A (2004) Cell 118:767–780

    Article  CAS  Google Scholar 

  49. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Bioconjug Chem 15:482–490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Technology Program for Nanoscience and Nanotechnology, the Thematic Research Project of Academia Sinica, the Biomedical Nano-Imaging Core Facility at National Synchrotron Radiation Research Center (Taiwan), the Fonds National Suisse pour la Recherche Scientifique, and by the Center for Biomedical Imaging (CIBM, supported by the Louis-Jeantet and Leenards foundations). The Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under the Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeukuang Hwu.

Additional information

Published in the special issue Imaging Techniques with Synchrotron Radiation with Guest Editor Cyril Petibois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(MPG 7801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Chen, HH., Wang, CL. et al. Imaging the cellular uptake of tiopronin-modified gold nanoparticles. Anal Bioanal Chem 401, 809–816 (2011). https://doi.org/10.1007/s00216-011-4986-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4986-3

Keywords

Navigation