Skip to main content
Log in

Compact, cost-efficient microfluidics-based stopped-flow device

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A PMMA 7 N layer of 2 mm blocks approximately 50% of the light at 280 nm. The optical path through the chip material has a length of 1 mm before plus 1 mm after the detection cell.

  2. The reaction was set up following a protocol described in [19] for the labeling of alanine.

References

  1. Chance B (1940) J Franklin Inst 229:455–613

    Article  CAS  Google Scholar 

  2. Gibson QH, Milnes L (1964) Biochem J 91:161

    CAS  Google Scholar 

  3. Sykora J, Meyer-Almes FJ (2010) Biochemistry 49(7):1418–1424

    Article  CAS  Google Scholar 

  4. Gabibov AG, Kochetkov SN, Sashchenko LP, Smirnov IV, Timofeev VP, Severin ES (1983) Eur J Biochem 132(2):339–344

    Article  CAS  Google Scholar 

  5. Biro FN, Zhai J, Doucette CW, Hingorani MM (2010) J Vis Exp (37):1874, doi:10.3791/1874

  6. Kern S, Riester D, Hildmann C, Schwienhorst A, Meyer-Almes FJ (2007) FEBS J 274(14):3578–3588

    Article  CAS  Google Scholar 

  7. Nienhaus U (2005) Protein-ligand interactions – methods and applications. Humana, Totowa

    Book  Google Scholar 

  8. Tonomura B, Nakatani H, Ohnishi M, Yamaguchi-Ito J, Hiromi K (1978) Anal Biochem 84:370–383

    Article  CAS  Google Scholar 

  9. Peterman BF (1979) Anal Biochem 93:442–444

    Article  CAS  Google Scholar 

  10. Guo M, Bhaskar B, Li H, Barrows TL, Poulos TL (2004) Proc Natl Acad Sci USA 101(16):5940–5945

    Article  CAS  Google Scholar 

  11. van Dael H (2003) Protein Sci 12:609–619

    Article  Google Scholar 

  12. Zhang HJ, Sheng XR, Niu WD, Pan XM, Zhou JM (1998) J Biol Chem 273:7448–7456

    Article  CAS  Google Scholar 

  13. Stumps MR, Gloss LM (2008) J Mol Biol 384:1369–1383

    Article  Google Scholar 

  14. Engel MFM, van Mierlo CPM, Visser AJWG (2002) J Biol Chem 277:10922–10930

    Article  CAS  Google Scholar 

  15. BioLogic (2010) Bio-Logic - rapid-mixing instruments. http://www.bio-logic.info/rapid-kinetics/rmi.html. Accessed 14 Sep 2010

  16. TgK Scientific (2010) High-pressure stopped-flow. http://www.hi-techsci.com/products/highpressure. Accessed 14 Sep 2010

  17. Kobayashi K, Yoshioka S, Kato Y, Asano Y, Aono S (2005) J Biol Chem 280:5486–5490

    Article  CAS  Google Scholar 

  18. Fan YX, Zhou JM, Kihara H, Tsou CL (1998) Protein Sci 7:2631–2641

    Article  CAS  Google Scholar 

  19. Stein S, Böhlen P, Udenfriend S (1974) Arch Biochem Biophys 163:400–403

    Article  CAS  Google Scholar 

  20. Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Lab Chip 6:66–73

    Article  CAS  Google Scholar 

  21. Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Microfluid Nanofluid 1:108–118

    Article  CAS  Google Scholar 

  22. Green J, Holdo AE, Khan A (2007) Int J Multiphys 1(1):1–32

    Article  Google Scholar 

  23. Nguyen NT, Wu Z (2005) J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  24. Hessel V, Löwe H, Schönfeld F (2005) Chem Eng Sci 60:2479–2501

    Article  CAS  Google Scholar 

  25. Falk L, Commenge JM (2010) Chem Eng Sci 65:405–411

    Article  CAS  Google Scholar 

  26. Berger RL, Balko B, Chapman HF (1968) Rev Sci Instrum 39:493–498

    Article  CAS  Google Scholar 

  27. Mansur EA, Mingxing YE, Yundong W, Youyuan D (2008) Chin J Chem Eng 16(4):503–516

    Article  CAS  Google Scholar 

  28. Bothe D, Stemich C, Warnecke HJ (2006) Chem Eng Sci 61:2950–2958

    Article  CAS  Google Scholar 

  29. Reynisson E, Josefsen MH, Krause M, Hoorfar J (2006) J Microbiol Methods 66(2):206–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Ritzi-Lehnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleul, R., Ritzi-Lehnert, M., Höth, J. et al. Compact, cost-efficient microfluidics-based stopped-flow device. Anal Bioanal Chem 399, 1117–1125 (2011). https://doi.org/10.1007/s00216-010-4446-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4446-5

Keywords

Navigation