Skip to main content

Advertisement

Log in

Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the presence of micropollutants such as pharmaceuticals, in coastal areas, is very limited; therefore, the main objective of this study was to optimize and validate a new analytical method for the quantitative analysis of 13 multiclass pharmaceuticals in seawater. Target compounds included antibiotics, non-steroidal anti-inflammatory drugs, β-blockers, lipid regulators and one psychiatric drug. A combination of solid-phase extraction and liquid chromatography coupled with multiple mass spectrometry enabled their detection at the low nanogram per litre level. The limits of quantification varied between 1 and 50 ng L-1, for most components the linearities were more than 0.99 and the recoveries obtained in seawater (95–108%) were satisfactory. This method was applied to seawater and estuarine water samples collected in the Belgian coastal zone, to assess the prevalence of common pharmaceuticals in this marine environment. Seven pharmaceuticals, including compounds of which the presence in marine environments had not been reported earlier, were detected, with salicylic acid and carbamazepine being the most abundant, in concentrations up to 855 ng L-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ternes TA (2001) Trends Anal Chem 20:419–434

    Article  CAS  Google Scholar 

  2. Jones OAH, Voulvoulis N, Lester JN (2004) Crit Rev Toxicol 34:335–350

    Article  CAS  Google Scholar 

  3. NIHDI, Farmanet (2007) National Institute for Health and Disability Insurance, Farmanet 2007. http://riziv.fgov.be/drug/nl/statistics-scientific-information/index.htm

  4. Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Chemosphere 36:357–394

    Article  CAS  Google Scholar 

  5. Fent K, Weston AA, Caminada D (2006) Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  6. Cooper ER, Siewicki TC, Philips K (2008) Sci Total Environ 398:26–33

    Article  CAS  Google Scholar 

  7. Christensen AM, Markussen B, Baun A, Halling-Sorensen B (2009) Chemosphere 77:351–358

    Article  CAS  Google Scholar 

  8. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Talanta 69:334–342

    Article  CAS  Google Scholar 

  9. Roberts PH, Bersuder P (2006) J Chromatogr A 1134:143–150

    Article  CAS  Google Scholar 

  10. Petrovic M, Hernando MD, Diaz-Cruz MS, Barceló D (2005) J Chromatogr A 1067:1–14

    Article  CAS  Google Scholar 

  11. Pozo OJ, Guerrero C, Sancho JV, Ibanez M, Pitarch E, Hogendoorn E, Hernandez F (2005) J Chromatogr A 1103:83–93

    Article  Google Scholar 

  12. Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden NM, Cragin D, Meyerhoff RD, D’Aco VJ, Anderson PD (2005) Regul Toxicol Pharmacol 42:296–312

    Article  CAS  Google Scholar 

  13. Kostich MS, Lazorchak JM (2008) Sci Total Environ 389:329–339

    Article  CAS  Google Scholar 

  14. Carlsson C, Johansson A-K, Alvan G, Bergman K, Kühler T (2006) Sci Total Environ 364:67–87

    Article  CAS  Google Scholar 

  15. Commission E (2000) Off J Eur Communities L 327:1–72

    Google Scholar 

  16. Commission E (2008) Off J Eur Union L 348:84–97

    Google Scholar 

  17. OSPAR (2009) List of chemicals of priority action and the list of substances of possible concern. http://www.ospar.org. Accessed 1 Dec 2009

  18. Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) J Hazard Mater 122:195–204

    Article  CAS  Google Scholar 

  19. Lindqvist N, Tuhkanen T, Kronberg L (2005) Water Res 39:2219–2228

    Article  CAS  Google Scholar 

  20. Gros M, Petrovic M, Barceló D (2009) Anal Chem 81:898–912

    Article  CAS  Google Scholar 

  21. Grujic S, Vasiljevic T, Lausevic M (2009) J Chromatogr A 1216:4989–5000

    Article  CAS  Google Scholar 

  22. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Lancet 355:1789–1790

    Article  CAS  Google Scholar 

  23. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  24. Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) J Chromatogr A 938:199–210

    Article  CAS  Google Scholar 

  25. Weigel S, Kuhlmann J, Hühnerfuss H (2002) Sci Total Environ 295:131–141

    Article  CAS  Google Scholar 

  26. Bueno MJM, Hernando MD, Agüera A, Fernández-Alba AR (2009) Talanta 77:1518–1527

    Article  Google Scholar 

  27. Bones J, Thomas K, Nesterenko PN, Paull B (2006) Talanta 70:1117–1128

    Article  CAS  Google Scholar 

  28. Tolls J (2001) Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  29. Noppe H, De Wasch K, Poelmans S, Van Hoof N, Verslycke T, Janssen CR, De Brabander HF (2005) Anal Bioanal Chem 383:91–98

    Article  Google Scholar 

  30. Gómez MJ, Petrovic M, Fernández-Alba AR, Barceló D (2006) J Chromatogr A 1114:224–233

    Article  Google Scholar 

  31. Nebot C, Gibb SW, Boyd KG (2007) Anal Chim Acta 598:87–94

    Article  CAS  Google Scholar 

  32. Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UAT (2004) Anal Bioanal Chem 378:955–963

    Article  CAS  Google Scholar 

  33. Commission E (2002) Off J Eur Communities L 221:8–36

    Google Scholar 

  34. European Commission (2004) SANCO/825/00 revision 7. Guidance document on residue analytical methods. European Commission, Directorate General Health and Consumer Protection

  35. Madureira TV, Barreiro JC, Rocha MJ, Cass QB, Tiritan ME (2009) J Chromatogr A 1216:7033–7042

    Article  CAS  Google Scholar 

  36. Zhang ZL, Zhou JL (2007) J Chromatogr A 1154:205–213

    Article  CAS  Google Scholar 

  37. Gros M, Petrovic M, Barceló D (2006) Talanta 70:678–690

    Article  CAS  Google Scholar 

  38. Ternes TA (1998) Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  39. Buser HR, Muller MD, Theobald N (1998) Environ Sci Technol 32:188–192

    Article  CAS  Google Scholar 

  40. Weigel S, Bester K, Hühnerfuss H (2001) J Chromatogr A 912:151–161

    Article  CAS  Google Scholar 

  41. Togola A, Budzinski H (2008) J Chromatogr A 1177:150–158

    Article  CAS  Google Scholar 

  42. Vuksanovic V, De Smedt F, Van Meerbeeck S (1996) J Hydrol 174:1–18

    Article  CAS  Google Scholar 

  43. Jonkers N, Laane RWPM, De Graaf C, de Voogt P (2005) Estuar Coast Shelf Sci 62:141–160

    Article  CAS  Google Scholar 

  44. Noppe H, Verslycke T, De Wulf E, Verheyden K, Monteyne E, Van Caeter P, Janssen CR, De Brabander HF (2006) Ecotoxicol Environ Saf 66:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Vanhaecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, K., Noppe, H., Verheyden, K. et al. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Anal Bioanal Chem 397, 1797–1808 (2010). https://doi.org/10.1007/s00216-010-3702-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3702-z

Keywords

Navigation