Skip to main content
Log in

Development of bacteria-based bioassays for arsenic detection in natural waters

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor–reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor–reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mandal BK, Suzuki KT (2002) Talanta 58:201–235

    Article  CAS  Google Scholar 

  2. Jain CK, Ali I (2000) Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  3. National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington

    Google Scholar 

  4. Smith AH, Lingas EO, Rahman M (2000) Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim KW, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Environ Int (in press)

  6. Smedley PL, Kinniburgh DG (2002) Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  7. Cai J, DuBow MS (1997) Biodegradation 8:105–111

    Article  CAS  Google Scholar 

  8. Oremland RS, Stolz JF (2003) Science 300:939–944

    Article  CAS  Google Scholar 

  9. Cullen WR, Reimer KJ (1989) Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  10. Hung DQ, Nekrassova O, Compton RG (2004) Talanta 64:269–277

    Article  CAS  Google Scholar 

  11. Melamed D (2005) Anal Chim Acta 532:1–13

    Article  CAS  Google Scholar 

  12. Rahman M, Mukherjee D, Sengupta MK, Chowdhury UK, Lodh D, Chanda CR, Roy S, Selim M, Quamrussaman Q, Milton AH, Shahidullah SM, Rahman MT, Chakraborti D (2002) Environ Sci Technol 36:5385–5394

    Article  CAS  Google Scholar 

  13. Steinmaus CM, George CM, Kalman DA, Smith AH (2006) Environ Sci Technol 40:3362–3366

    Article  CAS  Google Scholar 

  14. van der Meer JR, Tropel D, Jaspers MCM (2004) Environ Microbiol 6:1005–1020

    Article  Google Scholar 

  15. Rosen BP (1995) J Basic Clin Physiol Pharmacol 6:251–263

    Article  CAS  Google Scholar 

  16. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Chem Rev 100:2705–2738

    Article  CAS  Google Scholar 

  17. Tauriainen S, Karp M, Chang W, Virta M (1997) Appl Environ Microbiol 63:4456–4461

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tauriainen S, Virta M, Chang W, Karp M (1999) Anal Biochem 272:191–198

    Article  CAS  Google Scholar 

  19. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Environ Sci Technol 37:4743–4750

    Article  CAS  Google Scholar 

  20. Wackwitz A, Harms H, Chatzinotas A, Breuer U, Vogne C, van der Meer JR (2008) Microb Biotechnol 1:149–157

    Article  CAS  Google Scholar 

  21. Roberto FF, Barnes JM, Bruhn DF (2002) Talanta 58:181–188

    Article  CAS  Google Scholar 

  22. Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S (2005) Anal Biochem 342:11–19

    Article  CAS  Google Scholar 

  23. Date A, Pasini P, Daunert S (2007) Anal Chem 79:9391–9397

    Article  CAS  Google Scholar 

  24. Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Appl Environ Microbiol 74:6730–6738

    Article  CAS  Google Scholar 

  25. Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Environ Sci Technol 39:7625–7630

    Article  CAS  Google Scholar 

  26. Kuppardt A, Chatzinotas A, Breuer U, van der Meer JR, Harms H (2009) Appl Microbiol Biotechnol 82:785–792

    Article  CAS  Google Scholar 

  27. Tecon R, van der Meer JR (2008) Sensors 8:4062–4080

    Article  CAS  Google Scholar 

  28. Baumann B, van der Meer JR (2007) J Agric Food Chem 55:2115–2120

    Article  CAS  Google Scholar 

  29. Lewis C, Beggah S, Pook C, Guitart C, Redshaw C, van der Meer JR, Readman JW, Galloway T (2009) Environ Sci Technol 43:423–428

    Article  CAS  Google Scholar 

  30. Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Anal Chem 79:5740–5745

    Article  CAS  Google Scholar 

  31. Hakkila K, Green T, Leskin P, Ivask A, Marks R, Virta M (2004) J Appl Toxicol 24:333–342

    Article  CAS  Google Scholar 

  32. Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Biosens Bioelectron 22:1396–1402

    Article  CAS  Google Scholar 

  33. Liao C, Jau S, Chen W, Lin C, Jou L, Liu C, Liao VH, Chang F (2008) Environ Toxicol 23:702–711

    Article  CAS  Google Scholar 

  34. Tauriainen SM, Virta MPJ, Karp MT (2000) Water Res 34:2661–2666

    Article  CAS  Google Scholar 

  35. Tamminen MV, Virta MP (2007) Chemosphere 66:1329–1335

    Article  CAS  Google Scholar 

  36. Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Microchim Acta 151:217–222

    Article  CAS  Google Scholar 

  37. Wells M, Gösch M, Harms H, van der Meer JR (2005) Microchim Acta 151:209–216

    Article  CAS  Google Scholar 

  38. Wells M, Gösch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Anal Chem 77:2683–2689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Roelof van der Meer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diesel, E., Schreiber, M. & van der Meer, J.R. Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 394, 687–693 (2009). https://doi.org/10.1007/s00216-009-2785-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2785-x

Keywords

Navigation